
Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Class::Multimethods and WWW::Mechanize

Abram Hindle

Victoria Perl Mong ers

abez@abez.ca

January 20, 2003

1

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Class::Multimethods
� What does Class Multimethods do?

– Provide Dynamic Dispatch to Perl methods.

– Provide overloading to Perl functions and methods.

– Provice some form of easy type checking on functions.

2

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Why
� We can already do the type checking ourselves when we want to! Why use

Class::Multimethods?

– More maintainable.

– Better code reuse.

– Only functions and method we explicitly create with Class::Multimethods will

use it.

– Handles Recursion.

3

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Multi-Dispatc h
� Multi-dispatch is when at runtime a function call or method call is matched to the

arguments being passed. For instance we have a subroutine and we want to it

act differently based on the type of arguments passed to it, maybe we have a

display function and if a window instead of a graphical context is sent to that

function we have run some extra code. Multi-dispatch enables us to handle

these situations while still allowing for code reuse.

4

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Multi-Dispatc h
� Our problem: We want to make a method which prints references out in a

special way. An object could potentially be printed as well.

– Solution 1: Have a big if else block or a hash with subroutine values to

choose which chunk of code to run to print a reference.

– Solution 2: Use Class::Multimethods to make multiple subroutines for each

case of reference we care about.

� Solution 1 works but we’d have to write the code and it’s not very maintainable.

What if more Classes come along which have special ways of printing?

� Solution 2 allows for maintainability and code reuse. It also handles recursion

well. The only catch is it could be slower depending on how well you’re

acquainted with Perl.

� Essentially this example is similar to overloading.

5

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

types.pl
use Class ::Multimethods ;

sub printRef {

if (ref($_ [0]) eq ’ARRAY’) {

print join("," ,@$_[0]), "\n ";

} elsif (ref($_[0]) eq ’HASH’) {

my @out = ();

while (my ($key ,$val) = each %$_[0]) {

push @out, "$key => $val ";

}

printRef (\ @out);

}

}

multimethod printRefM => (HASH) => sub {

my @out = ();

while (my ($key ,$val) = each %$_[0]) {

push @out, "$key => $val ";

}

printRefM (\@out);

};

multimethod printRefM => (ARRAY) => sub {

print join("," ,@$_[0]), "\n ";

};

6

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Overloading
� In statically typed languages it’s common to have functions like:

– connectTo(int ip);

– connectTo(String ip);
� In Perl you have to do the type checking at the start of the subroutine but with

Class::Multimethods:
multimethod connectTo => (’#’) => sub {

net_connect ($_[0]);

}

multimethod connectTo => (’$’) => sub {

net_connect (convertToIp ($_ [0]));

}

� It’s EASY! # means numeric scalar while $ means non numeric scalar!

7

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Equality .pm
package Equality ;

use Class ::Multimethods qw(equals);

sub new {

my $type = shift;

$type = ref($type) || $type ;

my $self = {};

bless $self ,$type ;

return $self ;

}

multimethod equals => (Equality ,Equality) =>

sub { return 0; };

resolve_no_match equals => sub {

return 0;

};

1;

8

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Circle.pm
package Circle ;

use Class ::Multimethods ;

use base qw(Equality);

sub new {

my $type = shift;

my $self = {};

bless $self ,$type ;

my %args = @_;

$self ->{radius } = $args {radius } || 1;

return $self ;

}

multimethod equals => (Circle ,Circle) =>

sub {

return ($_ [0]->{ radius } == $_[1]->{ radius });

};

multimethod equals => (Circle ,Oval) =>

sub {

return ($_ [1]->{ radiusx } == $_[1]->{ radiusy } && $_[0]->{

radius } == $_[1]->{ radiusx });

};

1;

9

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Oval.pm
package Oval ;

use Class ::Multimethods ;

use base qw(Equality);

sub new {

my $type = shift;

my $self = {};

bless $self ,$type ;

my %args = @_;

$self ->{radiusx } = $args {radiusx } || 2;

$self ->{radiusy } = $args {radiusy } || 1;

return $self ;

}

multimethod equals => (Oval ,Oval) => sub {

return ($_ [0]->{ radiusx } == $_[1]->{ radiusx }) &&

($_[0]->{ radiusy } == $_[1]->{ radiusy });

};

multimethod equals => (Oval ,Circle) => sub { return $_[1]-> equals ($_

[0]); };

1;

10

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

multimethod.pl
#!/usr /bin /perl

#use Contrived ; #j/k

use Circle ;

use Oval ;

use Equality ;

my $other = Equality ->new ();

my %hash = (" CircleEQ "=> Circle ->new (radius =>4),

" CircleNE "=> Circle ->new (radius =>3.5),

" Ovaleq " => Oval-> new(radiusx =>4,radiusy =>4),

" Ovalne " => Oval-> new(radiusx =>4,radiusy =>3.5),

" Other " => $other ,

);

foreach my $key1 (keys %hash) {

foreach my $key2 (keys %hash) {

print " $key1 is ",

($hash {$key1 }-> equals ($hash {$key2 }))? "equal " :"not

equal ",

" to $key2 \n";

}

};1;

11

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Produces:
Other is not equal to Other

Other is not equal to CircleNE

Other is not equal to Ovalne

Other is not equal to CircleEQ

Other is not equal to Ovaleq

CircleNE is not equal to Other

CircleNE is equal to CircleNE

CircleNE is not equal to Ovalne

CircleNE is not equal to CircleEQ

CircleNE is not equal to Ovaleq

Ovalne is not equal to Other

Ovalne is not equal to CircleNE

Ovalne is equal to Ovalne

Ovalne is not equal to CircleEQ

Ovalne is not equal to Ovaleq

CircleEQ is not equal to Other

CircleEQ is not equal to CircleNE

CircleEQ is not equal to Ovalne

CircleEQ is equal to CircleEQ

CircleEQ is equal to Ovaleq

Ovaleq is not equal to Other

Ovaleq is not equal to CircleNE

Ovaleq is not equal to Ovalne

Ovaleq is equal to CircleEQ

Ovaleq is equal to Ovaleq

12

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Conc lusions
� Class::Multimethods provides Perl Users with easy to use Overloading and

Multi-Dispatch methods.

� Reduces maintenance time.

� Class::Multimethods tries to get a closest fit which makes sense.

� You don’t have to use it.

� Checkout:

http://search.cpan.org/src/DCONWAY/Class-Multimethods-1.70/tutorial.html

�
(Sit down we still have WWW::Mechanize to go!)

13

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

WWW::Mec haniz e
� What does WWW::Mechanize do?

– Automates interactions with Websites

– Abstract forms on a website for you.

– Submit forms for your scripts.

– Maintain cookies.

– Acts like a scriptable browser.

14

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

What?
� What is WWW::Mechanize?

– Child of LWP::UserAgent

– Add-on for Libwww-perl

– Derivative of WWW::Chat

– Your ticket to website crawling

15

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Example 1
� Lets go to Google and click on the first link that matches cpan when we search

for ”WWW::Mechanize”.

– We see there is only 1 form on Google.

– We see the text-field is called ”q”.

16

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

FormatHTML.pm
package FormatHTML;

use Exporter ;

use HTML::FormatText ;

use HTML::TreeBuilder ;

@ISA = qw(Exporter);

@EXPORT= qw(formatHTML);

sub formatHTML {

$tree = HTML:: TreeBuilder -> new->parse ($_[0]);

$formatter = HTML::FormatText -> new(leftmargin => 0, rightmargin

=> 80);

my $str = $formatter -> format($tree);

$str =˜ s/\n\ n/\n /g;

return $str ;

}

1;

17

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

mech1.pl
use WWW::Mechanize ;

use FormatHTML;

my $agent = WWW::Mechanize ->new ();

$agent -> get("http ://www .google .ca");

$agent -> form (1); #use the first form

$agent -> field ("q" ,"WWW::Mechanize ");

$agent -> click ;

$agent -> follow ("cpan ");

print formatHTML ($agent ->{ content }), "\ n";

18

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Produces:
The CPAN Search Site

Home Authors Recent About Mirrors FAQ Feedback

in

Andy Lester > WWW-Mechanize-0.32

WWW-Mechanize -0.32

==================

This Release

WWW-Mechanize -0.32

[Download] [Browse]

23 Oct 2002

Latest Release

WWW-Mechanize -0.33

[Download] [Browse]

16 Jan 2003

Other Releases

Links

[CPAN Testers] [CPAN Request Tracker]

Special Files

Changes

MANIFEST

README

Modules

WWW::Mechanize

automate interaction with websites

0.32

19

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Figure 1: Mozilla Rendered Example

20

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Review Example ”mec h1.pl”
� WWW::Mechanize is object oriented, you must create a new WWW::Mechanize

agent to use it.

� To get a webpage you can use the get($url) method.

� Forms are selected by order of appearance starting at 1.

� Fields have to be referenced by name

� Method ”click” will click the buttons on the form. If there is only one button just

one call to click without arguments will do.

� Method ”follow” follows the first link on the page to match the arguments given.

21

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Example 2
� Let’s query cpan for module documentation!

� searchCPAN.pl
use WWW::Mechanize ;

use FormatHTML;

my $agent = WWW::Mechanize ->new ();

my $search = shift || "WWW::Mechanize ";

$agent -> get("http :// search .cpan .org /");

$agent -> form (1); #use the first form

$agent -> field ("query ",$search);

$agent -> click ;

$agent -> follow ($search);

print formatHTML ($agent ->{ content }),"\ n";

22

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

More WWW::Mec haniz e
� follo w also accepts a integer as an argument, it will click on the nth link other it

will click on the link which matches the 1st argument.

� $agent->{content}

gets the content of the last page visited.

� back method acts like a browser back button. Goes to the previous page

visited (not the first page).

� extract links method extracts all the links from a page (returns a list of links

which are 3-tuples

[[$destination,$text,$name] ,...]

23

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Attribute Comment Type

uri The current URI

req The current request object [HTTP::Request]

res The response received [HTTP::Response]

status The status code of the response

ct The content type of the response

base The base URI for current response

content The content of the response

forms Array of forms found in content [HTML::Form]

form Current form [HTML::Form]

links Array of links found in content

Table 1: WWW::Mechanize’s get method sets the above attributes per call

24

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Forms
� Forms are already parsed for you.
� If you don’t know the name of the first input on the webpage you can use the

HTML::Form object to get the input name.
sub getFirstInputName {

my $agent = shift;

my $form = $agent ->{form };

foreach my $input ($form -> inputs) {

if ($input ->type =˜ / text/) {

return $input ->name ;

}

}

return undef;

}

25

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

Tips
� It’s often easier to parse HTML with all the tags removed e.g. use my

formatHTML command
� To get cookies to work you have to set a cookie-jar:

$agent -> cookie_jar ({ file =>"$ENV{HOME}/. cookies .txt "});

� You can set the name of the user agent passed to server easily:
$agent -> agent ([" Mozilla /5.0 (X11; U; Linux i686 ; en-US; rv:1.3 a) Gecko

/20021126"]);

� Since a WWW::Mechanize object is a LWP::UserAgent you can do anything a
LWP::UserAgent can! So if you need to post to a form and you know the
parameters, just do it!
use HTTP::Request ;

use HTTP::Request ::Common ;

use LWP::UserAgent ;

$ua = LWP::UserAgent ->new ;

$r = $ua ->request (POST " http:// www.allmusic .com /cg /amg .dll" ,[P=>"amg"

, sql=> "air ", opt1=> "1" ,]);

print $r ->content ;

26

Abram Hindle Class::Multimethods and WWW::Mechanize Victoria.pm

References
� I recommend getting help from these resources:

– perldoc WWW::Mechanize

– perldoc LWP::UserAgent

– perldoc HTTP::Request::Common

– perldoc LWP

– perldoc Class::Multimethods

– CPAN (of course)

– Conway, Damian

http://search.cpan.org/src/DCONWAY/Class-Multimethods-1.70/tutorial.html

27

