
Object Oriented Perl: An Introduction

Object Oriented Perl: An Introduction

Abram Hindle

Department of Computer Science

University of Victoria

abez@uvic.ca

July 13, 2004

Abram Hindle 1

Object Oriented Perl: An Introduction

This Presentation
• What am I going to cover?

– OO Intro

– Packages

– References

– Constructor

– Attributes

– Methods

– Inheritance

– Fun Stuff

– Getting Help

– Conclusions

– References

Abram Hindle 2

Object Oriented Perl: An Introduction

OO Introduction
• What are objects?

– A combination of attributes and functions associated with those attributes.

Objects can have state, identify and behaviors. You can execute actions

associated with objects. e.g. A dog object could bark. Effectively objects are

instances of Classes.

• What are classes?

– The definition or blueprint for an object.

http://www.justpbinfo.com/techdocs/ooterms.asp

Abram Hindle 3

Object Oriented Perl: An Introduction

OO Introduction
• Why use Object Oriented Programming

– OOP helps us organize our code and split our problems up into smaller

blocks.

– OOP is the current dominant programming style.

– OOP seems to be the best that we currently have in imperative programming.

– With OOP we gain useful things like polymorphism, encapsulation and other

big words/concepts.

Abram Hindle 4

Object Oriented Perl: An Introduction

Packages
• What are Packages?

– The main way code is organized in Perl is with packages.

– Sample Package:

∗ package Name;

use strict; #save us debugging time

...code...

1; # outdated, used for a return from a use.

– More than 1 package can exist in a file. Usually packages are saved into .pm

files like Name.pm

Abram Hindle 5

Object Oriented Perl: An Introduction

Packages
• More Details...

– Our Class Names will be the package name.

– Packages can be included by using them:

∗ use Name;

– If a package in a subdirectory attach {dirname}::{packagename} .

∗ use SubDir::Name;

∗ package SubDir::Name;

Abram Hindle 6

Object Oriented Perl: An Introduction

Constructor
• What is a blessing?

– Blessing is taking a scalar and associating it with a class thus making a

reference, an object.

– Perl Classes can be any Perl data type:

– Scalar,Array,Hash,glob,etc. as long as you make a reference to it.

– HashRefs are the easiest to use.

– We can make a reference become a class (that we’ve defined) by blessing it!

∗ bless($hashRef,"Name");

Abram Hindle 7

Object Oriented Perl: An Introduction

Constructor
• How do constructors work in Perl?

– The function ”new” has special properties in Perl:

∗ $obj = Name->new();

∗ $obj = new Name();]

– We can make a constructor like so:

∗ sub new {

my $type = shift;

$type = ref($type) || $type;

my $self = {};

bless($self,$type);

return $self;

}

Abram Hindle 8

Object Oriented Perl: An Introduction

Attributes
• How do attributes work in Perl?

– Since our object is a hashref we can store dynamic information inside of our

object. We can only store scalars, so everything is scalar or a reference.

∗ $self->{counter} = 1;

$self->{array} = \@arr;

$self->{hash} = \%hash;

$arrayref = [@array];

$hashref = {%hash};

– We can have class variables (static) by declaring the variable global in the

package:

∗ my $counter = 0;

Abram Hindle 9

Object Oriented Perl: An Introduction

Attributes
• What about private attributes?

– The quick answer to ”what about private data members?” is No, you don’t

have private attributes. In Perl everything is public unless you try really really

hard then you can add further layers of encapsulation.

– Everything is PUBLIC, everyone can access your objects they way you don’t

want them to. Be responsible when coding to stay safe and use defined

interfaces.

Abram Hindle 10

Object Oriented Perl: An Introduction

Methods
• What about methods in Perl?

– Methods are functions which are associated with a class. We declare

methods inside of the package file containing our class.

– sub get {#generic getter

my ($self,$attr) = @_;

return $self->{$attr};

}

sub set {#generic setter

my ($self,$attr,$value) = @_;

$self->{$attr} = $value;

}

sub inc {

my $self = shift;

return ++$self->{count};

}

Abram Hindle 11

Object Oriented Perl: An Introduction

Methods
• How Do I call a method?

– To call a method you reference the object that had the method with − >

operator Obj− >method .

– my $obj = new Name();

$obj->method();

$obj->method;

Name->staticMethod();

Abram Hindle 12

Object Oriented Perl: An Introduction

Methods
• Method names can come from scalars

– my $methodname = "getName";

print Name->new()->$methodname(),"\n";

#Alternatively

#You can reference methods with strings really easy. Great for CGI

if you have a "safety hash"

@methods = qw(method1 method2 method3);

%safe{method1} = 1;

%safe{method2} = 1;

%safe{method3} = 1;

$method = $methods[rand(scalar(@methods))];

if ($safe->{$method}) { $obj->$method(); }

Abram Hindle 13

Object Oriented Perl: An Introduction

Destructors
• How does Perl handle destructors?

– Destructors are called when Perl garbage collection finds an instance of a

class to destroy.

– Perl does have destructors although they aren’t too useful. Sometimes you

might be abstracting a file handle so a destructor would be useful.

– sub DESTROY {

my $self = shift;

}

Abram Hindle 14

Object Oriented Perl: An Introduction

Inheritance
• How does Perl and Inheritance Work?

– Inheritance allows classes to ”inherit” or gain the functionality of a super

class but possibly overload some of the functions. A Sub class IS A member

of a super class.

∗ Dog and Cat inherit from Mammal. A dog IS A Mammal, a Cat is not a Dog

and a Mammal is not a Dog or a Cat. Mammals are warm blooded and

furry, dogs and cats are too.

Abram Hindle 15

Object Oriented Perl: An Introduction

Inheritance
• cont..

– To inherit from a super class in Perl we ”use base” in the sub class.

– use base "SuperClass" ;

– use base qw(SuperClass); #must provide a string

– Objects ”using base” now can call all the methods of the super object. Static

methods are not guaranteed to work properly. Static attributes will not work.

– Perl supports multiple inheritance.

Abram Hindle 16

Object Oriented Perl: An Introduction

Inheritance
• cont..

– Every Perl class inherits methods from UNIVERSAL.

$obj->isa("Type") , is a common method used.

– The package SUPER refers to the super class.

– E.g. a inherited constructor could be:

∗ sub new { return shift()->SUPER::new(@); }

Abram Hindle 17

Object Oriented Perl: An Introduction

Inheritance
• package Mammal; #Mammal.pm

sub new {

my $type = ref($_[0]) || $_[0];

my $self = {};

bless($self,$type);

return $self;

}

sub noise { return "FuzzFuzz"; }

1;

package Dog; #Dog.pm

use base qw(Mammal);

sub new { return shift()->SUPER::new(@_); }

sub noise { return "Bark"; }

1;

package Cat; #Cat.pm

use base qw(Mammal);

sub new { return shift()->SUPER::new(@_); }

sub noise { return "Meow"; }

Abram Hindle 18

Object Oriented Perl: An Introduction

1;

Abram Hindle 19

Object Oriented Perl: An Introduction

Inheritance
• Using the Module

– use Mammal;

use Dog;

use Cat;

my $cat = new Cat();

my $dog = new Dog();

my $mam = new Mammal();

foreach my $an ($cat,$dog,$mam) {

print "The ".ref($an)." says ".$an->noise()."\n";

}

Abram Hindle 20

Object Oriented Perl: An Introduction

Inheritance
• Output

– The Cat says Meow

The Dog says Bark

The Mammal says Fuzz Fuzz

Abram Hindle 21

Object Oriented Perl: An Introduction

Autoloading
• sub AUTOLOAD {

return if $AUTOLOAD =˜ /::DESTROY$/;

no strict ’refs’;

if ($AUTOLOAD=˜ /::get_(.*)$/) {

my $attribute = $1;

*{$AUTOLOAD} = sub { return shift()->{$attribute}; };

goto &$AUTOLOAD;

}

if ($AUTOLOAD=˜ /::set_(.*)$/) {

my $attribute = $1;

*{$AUTOLOAD} = sub {

my $self = shift;

$self->{$attribute} = shift;

};

goto &$AUTOLOAD;

}

} # http://www.perl.com/lpt/a/2002/08/07/proxyobject.html

Abram Hindle 22

Object Oriented Perl: An Introduction

Get Help!
• Here are some sources where you can get help.

– perldoc perltoot

– perldoc perltootc

– perldoc perlobj

– Damian Conways’s “Object Oriented Perl” book.

Abram Hindle 23

Object Oriented Perl: An Introduction

Conclusions
• Perl can easily be used in an Object Oriented Style

– A Majority of Perl modules are done in a OO Style

– Almost any OO trick you can do in any other language you can do in Perl

– Perl usually is lacking in cases of control of attributes

– Perl has a problem with colliding inherited attributes.

Abram Hindle 24

