Game Development In Perl Abram Hindle
|

Game Development In Perl

Abram Hindle
UVic Game Dev Club

abez@abez.ca

March 16, 2004

]
UVic Game Dev 1

Game Development In Perl Abram Hindle

This Presentation

e What am | going to cover?
— Arguments for using interpreted dynamic languages for game development.
— Patterns Of Perl and Games
— Libraries and Tools for Perl Game Development

— Survey of Games implemented in Perl

]
UVic Game Dev 2

Game Development In Perl Abram Hindle

This Presentation

e What am | not going to cover?
— In depth MikMod
— In depth SDL
— In depth XS
— Win32 support - There is some SDL_perl support
— OSX support - There is some SDL_perl support

— Anything In depth :-)

]
UVic Game Dev 3

Game Development In Perl Abram Hindle

Our Problem

e \What are problems in non-commercial game development?

Completion
Complexity
Garbage Collection

Integration of Mini or Interpreted Languages to allow for user extensible

objects and Al.
Low level languages are used to solve very high level problems. (C/C++)
User extensibility.

Content is more important than Code.. Code is easier.

UVic Game Dev 4

Game Development In Perl Abram Hindle

A Solution

e We could use interpreted / Dynamic Languages. But what are the

disadvantages?

— Slow

— Poor Hardware Support

— Difficulties getting "low level” access.
— Poor 110

— Lack benefits of static typing.

UVic Game Dev 5

Game Development In Perl Abram Hindle

A Solution

e \What are the advantages of interpreted and dynamic languages in relation to

games.
— Easy to program

— Easy to change

— Can be limited to a sub-domain (sand-boxed)
— Generate Code on the fly (genetic algorithms)
— Great for user defined objects and Al.

— Code can be loaded at anytime.

]
UVic Game Dev 6

Game Development In Perl Abram Hindle

A Solution

e [or our interpreted language, why use Perl?
— Fast interpreted language.
— Mature
— Great libraries and community support
— Perl can be embedded
— Perl can use C to call non-Perl libraries.

— Adoption - many users know Perl and there is much documentation on

learning Perl.

]
UVic Game Dev 7

Game Development In Perl Abram Hindle

Game Patterns

e What are the components of Games?
— Video system - sprites / 3d animation
— Audio system - event sounds
— Music system - background music
— Input system - keyboard, mouse, joystick
— Communication system - Networking, protocols etc.
— Logic system - The game rules, user defined objects etc.

— You can break out a lot of this into threads or an event based system.

]
UVic Game Dev 8

Game Development In Perl Abram Hindle

Game Patterns

e What are the important parts of a game that people often forget?
— Text/Fonts
— Menu and GUI components
— Content
— Script-ability
— Pausing
— Loading and Saving State

— Back-end tools to aid in content creation

]
UVic Game Dev 9

Game Development In Perl Abram Hindle

Game Patterns

e \What does the main method of a game look like?
— initialize
— menu
— run game loop

— clean up and exit

]
UVic Game Dev 10

Game Development In Perl Abram Hindle

Game Patterns

e \What does the game loop look like?

— Check for input and process - this includes the Al (it’s best if your Al acts like

a player rather than a separate subsystem).
— Update game objects
— Draw your screen
— Play your sounds

— Play your music

UVic Game Dev 11

Game Development In Perl Abram Hindle

Game Patterns

e How do we use Perl when making games?
— Perl calls C
— C calls Perl
— Perl acts as a client or a server

— Tool implementation

]
UVic Game Dev 12

Game Development In Perl Abram Hindle

Game Patterns

e Perl Calls C
— Game written in Perl

— Following the 90/10 optimization rule only small parts of the program really

benefit from conversion to C.
— We use the Perl to C interface “XS” to bind C code to Perl.

— External libraries can be wrapped in C

UVic Game Dev 13

Game Development In Perl Abram Hindle

Game Patterns

e C Calls Perl
— Game Predominantly written in C (Or other interfacing language)
— Perl runs the Al or the objects inside of the game.
— Best for games that demand High Performance
— User Perl to extend already existing games
— This option probably gives the greatest performance

— You can use Perl name spaces or Perl snippets

]
UVic Game Dev 14

Game Development In Perl Abram Hindle

Game Patterns

e Perl as a client
— Using a RPC or distributed object system (CORBA), Perl acts as a client,
— Useful for Al clients.
— Good for low bandwidth tasks (authentication)

— Makes extension even easier and not restricted to Perl alone.

UVic Game Dev 15

Game Development In Perl Abram Hindle

Game Patterns

e Perl as a server
— Use Perl to run the game logic and the networking
— Provides services to other servers (meta-server)

— If your client have to be extremely optimized much of the time a Perl server

will work just fine as the network 1/O is the biggest bottleneck.

— Many games are being designed as a client / server architecture thus these

patterns are becoming more relevant.

]
UVic Game Dev 16

Game Development In Perl Abram Hindle

Graphics

e How can we make GUIs and Graphics in Perl?
— Gtk - GUI
— Tk - GUI
— Qt- GUI
— FLTK - GUI
— Wx - GUI
— SDL - Graphics, 3D etc.

]
UVic Game Dev 17

Game Development In Perl Abram Hindle

Graphics

e SDL is probably the best bet for Games
— See graphics.pl
— SDL.::Surface and SDL::App are very easy to deal with.

— Image Loading, surfaces, alpha channels, color models, full-screen are all
handled by SDL.

]
UVic Game Dev 18

Game Development In Perl Abram Hindle

Sound and Music

e How can we play music and sound in Perl?

— SDL::Mixer - plays music and wav files, uses MikMod to play mods and xm

files. MikMod provides much of the tracker functionality.

— Midi::Music - plays midi music (if necessary)

]
UVic Game Dev 19

Game Development In Perl Abram Hindle

Sound and Music

e SDL is probably the best bet for Games
— See sound.pl
— SDL::Mixer , SDL::Sound and SDL::Music are very easy to deal with.

— Wave file loading, music file loading, multi-channel mixing, sound amplitude

are all handled.

— Non-blocking sound playing. Sound and music is played in the background.

]
UVic Game Dev 20

Game Development In Perl Abram Hindle

Input

e SDL is probably the best bet for Games. SDL handles:
— Keyboard (and special keys)
— Joystick
— Mouse

— Easily handled through SDL::Event

]
UVic Game Dev 21

Game Development In Perl Abram Hindle

Logic
e There are quite a few Perl modules for game logic.

— Great for designing Al's for games or as an example how to create a sharing

game state object.
— Card Games, such as poker
— Game state holders
- Go
— Chess

— Games::*

]
UVic Game Dev 22

Game Development In Perl Abram Hindle

Games In Perl

e Toad (Frogger)
— http://lwww.foo.be/docs/tpj/issues/vol5_3/tpj0503-0014.html
— 2048 Bytes (Original Frogger on the Atari 2600 was 4Kk)
— Won prize in Obfuscated Perl Contest

— use Tk;

]
UVic Game Dev 23

Game Development In Perl Abram Hindle

Games In Perl

e Open Mortal
— http://apocalypse.rulez.org/ upi/Mortal/
— Animation, Sprites, Music, Sound
— uses SDL, C, and Perl.
— Perl is embedded

— Perl is used to define the characters in the game. Character data is both data

and code.

— Good example of how to make the user defined objects actually user

definable and dynamically loadable.

]
UVic Game Dev 24

Game Development In Perl Abram Hindle

Games In Perl

e Perl FPS
— http://bloodgate.com/perl/sdl/game.html
— uses SDL and Perl
— 3D FPS
— In development

— SDL::App::FPS - a framework for developing a FPS

]
UVic Game Dev 25

Game Development In Perl Abram Hindle

Games In Perl

e Frozen Bubble
— http://lwww.frozen-bubble.org/
— Animation, Sprites, Music, Sound
— Quite small (2000 Perl LOC, 500 C LOC) but the biggest Perl success story.
— use SDL;
— Great Example of the use of SDL — probably the best Perl reference.

— Excellent example of what superior content can do for a game.

]
UVic Game Dev 26

Game Development In Perl Abram Hindle

Get Help!

e Good Places to get help:
— http://search.cpan.org/ - You can probably find what you're looking for
— http://lwww.libsdl.org/ - SDL homepage
— Perldocs For XS: perlembed, perlxstut, perlxs, perlcall, perlguts, xsubpp
— Perldocs for: SDL, SDL::Mixer, SDL::App, SDL::Surface,...
— http://lwww.frozen-bubble.org/ Frozen Bubble source code

— There are very few sites dedicated to Perl and game programming. Look for

other resources and try to apply them to Perl.

— http://lwww.thomastongue.com/Code/SDL_Perl_MacOSX.html - MacOSX
SDL Perl

]
UVic Game Dev 27

Game Development In Perl Abram Hindle

Rant

e Problems with Game Development
— Content is more important than code
— Game-play is more important than performance or graphics
— Itis very hard to finish anything that is “Cutting Edge”

— Commercial games are produced by a staff of full time specialized

employees. It's hard to compete at the same level.

— Preoccupation with performance and optimization is unhealthy and

counter-productive to making a game which people will actually play.

UVic Game Dev 28

Game Development In Perl Abram Hindle

Conclusions

e — 2D games are still fun
— Itis very hard to finish anything that is “Cutting Edge”
— The most important part of making a game is finishing
— Perl is appropriate for extending existing games
— Fast
— Well Supported
— Easy to code in
— Has reasonable level of adoption

— Don’t re-invent the wheel.

UVic Game Dev 29

Game Development In Perl Abram Hindle

Code Listing: sound.pl

SDL::Mixer;
use SDL::Event;
use SDL:App;
use strict;
use Data::Dumper;

my $sdl_flags = SDL_ANYFORMAT | SDL_HWSURFACE | SDL_DOUBLEBUF |
SDL_HWACCEL | SDL_ASYNCBLIT;

my $app = new SDL:App(-flags => $sdl_flags | 0, -title => 'SDL-Example’
, -width => 640, -height => 480);

my $bg = new SDL::Surface(-name => "bg.jpg");

my $arect = new SDL:Rect(-width => $app->width, -height => $app->height
);

$bg->blit($arect,$app,$arect);

$app->flip();#

my @img = ();

my @imgr = ();

my @maxx= ();

my @maxy = ();

for (1..3) {

]
UVic Game Dev 30

Game Development In Perl Abram Hindle

my $image = new SDL::Surface(-name => "$_.png");

my $rect = new SDL::Rect(-width => $image->width, -height =>
$image->height);

push @maxx,640 - $image->width;

push @maxy,480 - $image->height;

push @img,$image;

push @imgr, $rect;

print $maxx[$#maxx],” ", $maxy[$#maxy],$/;

}

my $event = SDL::Event->new;

my $mixer = eval { new SDL::Mixer(-frequency => 44100, -channels => 2, -
size =>

4096); };

my @keys = (a..’z',)0..9' A2V @' #,F, %, &, (,
)
my @sounds = ();
my $map = {};
foreach (@ARGV) {
my $key = shift @keys;
my $sound = new SDL:Sound($);
push @sounds, $sound;

UVic Game Dev 31

Game Development In Perl Abram Hindle

$map->{$key} = $sound;

}
my $index = O;
while ($event-> wait () {

my $type = $event->type(); # get event type
if ($type == SDL_KEYDOWN) {
my $sym = S$event->key sym();
my $key = chr ($sym);
print $sym," _[$key]".$/;
exit if $sym == 27;
if (exists $map->{$key}) {
my $sound = $map->{$key},
$mixer->play_channel(-1, $sound, 0);

my $in = $index%3;

my $x = int (rand ($maxx[$in]));

my $y int (rand ($maxx[$in]));

my $image = $img[$in];

my $drect = new SDL::Rect(-width => $image->width

-height => $image->height, -x => $x, -y’ => 3y);
$image->blit($arect,$app,$drect);
$app->flip();#

UVic Game Dev 32

Game Development In Perl Abram Hindle
|

$index++;

}
}

... handle event
exit if $type == SDL_QUIT;

]
UVic Game Dev 33

Game Development In Perl Abram Hindle

Code-Listing: graphics.pl

use SDL:App;

use SDL::Event;

use SDL::Surface;

use strict;

my $max = 3;

my $fullscreen = 0;

my $color = new SDL:Color (-r => 0, -g => 0, -b =>0);

my $sdl_flags = SDL_ANYFORMAT | SDL_HWSURFACE | SDL_DOUBLEBUF |
SDL_HWACCEL | SDL_ASYNCBLIT;

my $app = new SDL::App(-flags => $sdl_flags | ($fullscreen ?
SDL_FULLSCREEN : 0), -title => 'SDL-Example’, -width => 640, -height

=> 480);
my @img = ();
my @imgr = (),

my $bg = new SDL::Surface(-name => "bg.jpg");
for (1..$max) {
my $image = new SDL::Surface(-name => "$.png");
my $rect = new SDL::Rect(-width => $image->width, -height =>
$image->height);
push @img,$image;
push @imgr, $rect;

]
UVic Game Dev 34

Game Development In Perl Abram Hindle

}
my @sprites = ();
for (1..10) {
for my $i (1..$max) {
my $image = $img[$i-1];
my $imagerect = $imgr[$i-1];
push @sprites,{
img=>%image,
imgr=>%imagerect,
x=>int (rand (640)),
y=>int (rand (480)),
maxx=>640 - $imagerect->width,
maxy=>480 - $imagerect->height,
velx=>(1-2* int (rand (1)),
vely=>(1-2* int (rand (1))),

}
}
my $arect = new SDL::Rect(-width => $app->width, -height => $app->height
);
#my S$irect = new SDL:Rect(-width => $img->width, -height => $img->height
)i

my $event = new SDL::Event;

]
UVic Game Dev 35

Game Development In Perl Abram Hindle
|

for (1..2000) {

$bg->blit($arect,$app,$arect);

#$app->fill($arect,$color);

#$color->r(($color->r + 1)%255);

foreach my $sprite (@sprites) {
my ($img,$x,By,$velx,Svely,$maxX,$maxy ,$Sirect) =
@$sprite{ gw(img x y velx vely maxx maxy imgn)};
$x = $x+$velx;
if ($x < 0) { $x = 0; $velx = -$velx; }
if ($x > $maxX) { $x = $maxX; Pvelx = -$velx; }
Sy = Sy+dvely;
if (By < 0) { By = 0; $vely = -$vely; }
if ($y > $maxy) { $y = $maxy; $vely = -$vely; }
my $drect = new SDL:Rect(-width => $img->width, -height

=> $img->height, -x => $x, -y’ => 3y);
$img->blit($irect, $app, $drect);
@S$sprite{ gw(img x y velx vely maxx maxy imgr)} = ($img,$x
By, Svelx,$vely,$maxX,$maxy ,Jirect);

}

$app->flip();#

$app->delay(1);

if ($event->poll()) {
my $type = $event->type();

]
UVic Game Dev 36

Game Development In Perl Abram Hindle
|

exit if $type == SDL_QUIT;

]
UVic Game Dev 37

