
Game Development In Perl Abram Hindle

Game Development In Perl

Abram Hindle

UVic Game Dev Club

abez@abez.ca

March 16, 2004

UVic Game Dev 1

Game Development In Perl Abram Hindle

This Presentation
• What am I going to cover?

– Arguments for using interpreted dynamic languages for game development.

– Patterns Of Perl and Games

– Libraries and Tools for Perl Game Development

– Survey of Games implemented in Perl

UVic Game Dev 2

Game Development In Perl Abram Hindle

This Presentation
• What am I not going to cover?

– In depth MikMod

– In depth SDL

– In depth XS

– Win32 support - There is some SDL perl support

– OSX support - There is some SDL perl support

– Anything In depth :-)

UVic Game Dev 3

Game Development In Perl Abram Hindle

Our Problem
• What are problems in non-commercial game development?

– Completion

– Complexity

– Garbage Collection

– Integration of Mini or Interpreted Languages to allow for user extensible

objects and AI.

– Low level languages are used to solve very high level problems. (C/C++)

– User extensibility.

– Content is more important than Code.. Code is easier.

UVic Game Dev 4

Game Development In Perl Abram Hindle

A Solution
• We could use interpreted / Dynamic Languages. But what are the

disadvantages?

– Slow

– Poor Hardware Support

– Difficulties getting ”low level” access.

– Poor I/O

– Lack benefits of static typing.

UVic Game Dev 5

Game Development In Perl Abram Hindle

A Solution
• What are the advantages of interpreted and dynamic languages in relation to

games.

– Easy to program

– Easy to change

– Can be limited to a sub-domain (sand-boxed)

– Generate Code on the fly (genetic algorithms)

– Great for user defined objects and AI.

– Code can be loaded at anytime.

UVic Game Dev 6

Game Development In Perl Abram Hindle

A Solution
• For our interpreted language, why use Perl?

– Fast interpreted language.

– Mature

– Great libraries and community support

– Perl can be embedded

– Perl can use C to call non-Perl libraries.

– Adoption - many users know Perl and there is much documentation on

learning Perl.

UVic Game Dev 7

Game Development In Perl Abram Hindle

Game Patterns
• What are the components of Games?

– Video system - sprites / 3d animation

– Audio system - event sounds

– Music system - background music

– Input system - keyboard, mouse, joystick

– Communication system - Networking, protocols etc.

– Logic system - The game rules, user defined objects etc.

– You can break out a lot of this into threads or an event based system.

UVic Game Dev 8

Game Development In Perl Abram Hindle

Game Patterns
• What are the important parts of a game that people often forget?

– Text/Fonts

– Menu and GUI components

– Content

– Script-ability

– Pausing

– Loading and Saving State

– Back-end tools to aid in content creation

– ...

UVic Game Dev 9

Game Development In Perl Abram Hindle

Game Patterns
• What does the main method of a game look like?

– initialize

– menu

– run game loop

– clean up and exit

UVic Game Dev 10

Game Development In Perl Abram Hindle

Game Patterns
• What does the game loop look like?

– Check for input and process - this includes the AI (it’s best if your AI acts like

a player rather than a separate subsystem).

– Update game objects

– Draw your screen

– Play your sounds

– Play your music

UVic Game Dev 11

Game Development In Perl Abram Hindle

Game Patterns
• How do we use Perl when making games?

– Perl calls C

– C calls Perl

– Perl acts as a client or a server

– Tool implementation

UVic Game Dev 12

Game Development In Perl Abram Hindle

Game Patterns
• Perl Calls C

– Game written in Perl

– Following the 90/10 optimization rule only small parts of the program really

benefit from conversion to C.

– We use the Perl to C interface “XS” to bind C code to Perl.

– External libraries can be wrapped in C

UVic Game Dev 13

Game Development In Perl Abram Hindle

Game Patterns
• C Calls Perl

– Game Predominantly written in C (Or other interfacing language)

– Perl runs the AI or the objects inside of the game.

– Best for games that demand High Performance

– User Perl to extend already existing games

– This option probably gives the greatest performance

– You can use Perl name spaces or Perl snippets

UVic Game Dev 14

Game Development In Perl Abram Hindle

Game Patterns
• Perl as a client

– Using a RPC or distributed object system (CORBA), Perl acts as a client.

– Useful for AI clients.

– Good for low bandwidth tasks (authentication)

– Makes extension even easier and not restricted to Perl alone.

UVic Game Dev 15

Game Development In Perl Abram Hindle

Game Patterns
• Perl as a server

– Use Perl to run the game logic and the networking

– Provides services to other servers (meta-server)

– If your client have to be extremely optimized much of the time a Perl server

will work just fine as the network I/O is the biggest bottleneck.

– Many games are being designed as a client / server architecture thus these

patterns are becoming more relevant.

UVic Game Dev 16

Game Development In Perl Abram Hindle

Graphics
• How can we make GUIs and Graphics in Perl?

– Gtk - GUI

– Tk - GUI

– Qt - GUI

– FLTK - GUI

– Wx - GUI

– SDL - Graphics, 3D etc.

UVic Game Dev 17

Game Development In Perl Abram Hindle

Graphics
• SDL is probably the best bet for Games

– See graphics.pl

– SDL::Surface and SDL::App are very easy to deal with.

– Image Loading, surfaces, alpha channels, color models, full-screen are all

handled by SDL.

UVic Game Dev 18

Game Development In Perl Abram Hindle

Sound and Music
• How can we play music and sound in Perl?

– SDL::Mixer - plays music and wav files, uses MikMod to play mods and xm

files. MikMod provides much of the tracker functionality.

– Midi::Music - plays midi music (if necessary)

UVic Game Dev 19

Game Development In Perl Abram Hindle

Sound and Music
• SDL is probably the best bet for Games

– See sound.pl

– SDL::Mixer , SDL::Sound and SDL::Music are very easy to deal with.

– Wave file loading, music file loading, multi-channel mixing, sound amplitude

are all handled.

– Non-blocking sound playing. Sound and music is played in the background.

UVic Game Dev 20

Game Development In Perl Abram Hindle

Input
• SDL is probably the best bet for Games. SDL handles:

– Keyboard (and special keys)

– Joystick

– Mouse

– Easily handled through SDL::Event

UVic Game Dev 21

Game Development In Perl Abram Hindle

Logic
• There are quite a few Perl modules for game logic.

– Great for designing AI’s for games or as an example how to create a sharing

game state object.

– Card Games, such as poker

– Game state holders

– Go

– Chess

– Games::*

UVic Game Dev 22

Game Development In Perl Abram Hindle

Games In Perl
• Toad (Frogger)

– http://www.foo.be/docs/tpj/issues/vol5 3/tpj0503-0014.html

– 2048 Bytes (Original Frogger on the Atari 2600 was 4k)

– Won prize in Obfuscated Perl Contest

– use Tk;

UVic Game Dev 23

Game Development In Perl Abram Hindle

Games In Perl
• Open Mortal

– http://apocalypse.rulez.org/ upi/Mortal/

– Animation, Sprites, Music, Sound

– uses SDL, C, and Perl.

– Perl is embedded

– Perl is used to define the characters in the game. Character data is both data

and code.

– Good example of how to make the user defined objects actually user

definable and dynamically loadable.

UVic Game Dev 24

Game Development In Perl Abram Hindle

Games In Perl
• Perl FPS

– http://bloodgate.com/perl/sdl/game.html

– uses SDL and Perl

– 3D FPS

– In development

– SDL::App::FPS - a framework for developing a FPS

UVic Game Dev 25

Game Development In Perl Abram Hindle

Games In Perl
• Frozen Bubble

– http://www.frozen-bubble.org/

– Animation, Sprites, Music, Sound

– Quite small (2000 Perl LOC, 500 C LOC) but the biggest Perl success story.

– use SDL;

– Great Example of the use of SDL – probably the best Perl reference.

– Excellent example of what superior content can do for a game.

UVic Game Dev 26

Game Development In Perl Abram Hindle

Get Help!
• Good Places to get help:

– http://search.cpan.org/ - You can probably find what you’re looking for

– http://www.libsdl.org/ - SDL homepage

– Perldocs For XS: perlembed, perlxstut, perlxs, perlcall, perlguts, xsubpp

– Perldocs for: SDL, SDL::Mixer, SDL::App, SDL::Surface,...

– http://www.frozen-bubble.org/ Frozen Bubble source code

– There are very few sites dedicated to Perl and game programming. Look for

other resources and try to apply them to Perl.

– http://www.thomastongue.com/Code/SDL Perl MacOSX.html - MacOSX

SDL Perl

UVic Game Dev 27

Game Development In Perl Abram Hindle

Rant
• Problems with Game Development

– Content is more important than code

– Game-play is more important than performance or graphics

– It is very hard to finish anything that is “Cutting Edge”

– Commercial games are produced by a staff of full time specialized

employees. It’s hard to compete at the same level.

– Preoccupation with performance and optimization is unhealthy and

counter-productive to making a game which people will actually play.

UVic Game Dev 28

Game Development In Perl Abram Hindle

Conclusions
• – 2D games are still fun

– It is very hard to finish anything that is “Cutting Edge”

– The most important part of making a game is finishing

– Perl is appropriate for extending existing games

– Fast

– Well Supported

– Easy to code in

– Has reasonable level of adoption

– Don’t re-invent the wheel.

UVic Game Dev 29

Game Development In Perl Abram Hindle

Code-Listing: sound.pl
use SDL::Mixer;

use SDL::Event;

use SDL::App;

use strict;

use Data::Dumper;

my $sdl_flags = SDL_ANYFORMAT | SDL_HWSURFACE | SDL_DOUBLEBUF |

SDL_HWACCEL | SDL_ASYNCBLIT;

my $app = new SDL::App(-flags => $sdl_flags | 0, -title => ’SDL-Example’

, -width => 640, -height => 480);

my $bg = new SDL::Surface(-name => "bg.jpg");

my $arect = new SDL::Rect(-width => $app->width, -height => $app->height

);

$bg->blit($arect,$app,$arect);

$app->flip();#

my @img = ();

my @imgr = ();

my @maxx= ();

my @maxy = ();

for (1..3) {

UVic Game Dev 30

Game Development In Perl Abram Hindle

my $image = new SDL::Surface(-name => "$_.png");

my $rect = new SDL::Rect(-width => $image->width, -height =>

$image->height);

push @maxx,640 - $image->width;

push @maxy,480 - $image->height;

push @img,$image;

push @imgr, $rect;

print $maxx[$#maxx]," ",$maxy[$#maxy],$/;

}

my $event = SDL::Event->new;

my $mixer = eval { new SDL::Mixer(-frequency => 44100, -channels => 2, -

size =>

4096); };

my @keys = (’a’..’z’,’0’..’9’,’A’..’Z’,’!’,’@’,’#’,’$’,’%’,’ˆ’,’&’,’(’,

’)’);

my @sounds = ();

my $map = {};

foreach (@ARGV) {

my $key = shift @keys;

my $sound = new SDL::Sound($_);

push @sounds, $sound;

UVic Game Dev 31

Game Development In Perl Abram Hindle

$map->{$key} = $sound;

}

my $index = 0;

while ($event-> wait ()) {

my $type = $event->type(); # get event type

if ($type == SDL_KEYDOWN) {

my $sym = $event->key_sym();

my $key = chr ($sym);

print $sym," [$key]",$/;

exit if $sym == 27;

if (exists $map->{$key}) {

my $sound = $map->{$key};

$mixer->play_channel(-1, $sound, 0);

my $in = $index%3;

my $x = int (rand ($maxx[$in]));

my $y = int (rand ($maxx[$in]));

my $image = $img[$in];

my $drect = new SDL::Rect(-width => $image->width

,

-height => $image->height, -x => $x, ’-y’ => $y);

$image->blit($arect,$app,$drect);

$app->flip();#

UVic Game Dev 32

Game Development In Perl Abram Hindle

$index++;

}

}

... handle event

exit if $type == SDL_QUIT;

}

UVic Game Dev 33

Game Development In Perl Abram Hindle

Code-Listing: graphics.pl
use SDL::App;

use SDL::Event;

use SDL::Surface;

use strict;

my $max = 3;

my $fullscreen = 0;

my $color = new SDL::Color (-r => 0, -g => 0, -b =>0);

my $sdl_flags = SDL_ANYFORMAT | SDL_HWSURFACE | SDL_DOUBLEBUF |

SDL_HWACCEL | SDL_ASYNCBLIT;

my $app = new SDL::App(-flags => $sdl_flags | ($fullscreen ?

SDL_FULLSCREEN : 0), -title => ’SDL-Example’, -width => 640, -height

=> 480);

my @img = ();

my @imgr = ();

my $bg = new SDL::Surface(-name => "bg.jpg");

for (1..$max) {

my $image = new SDL::Surface(-name => "$_.png");

my $rect = new SDL::Rect(-width => $image->width, -height =>

$image->height);

push @img,$image;

push @imgr, $rect;

UVic Game Dev 34

Game Development In Perl Abram Hindle

}

my @sprites = ();

for (1..10) {

for my $i (1..$max) {

my $image = $img[$i-1];

my $imagerect = $imgr[$i-1];

push @sprites,{

img=>$image,

imgr=>$imagerect,

x=> int (rand (640)),

y=>int (rand (480)),

maxx=>640 - $imagerect->width,

maxy=>480 - $imagerect->height,

velx=>(1-2* int (rand (1))),

vely=>(1-2* int (rand (1))),

}

}

}

my $arect = new SDL::Rect(-width => $app->width, -height => $app->height

);

#my $irect = new SDL::Rect(-width => $img->width, -height => $img->height

);

my $event = new SDL::Event;

UVic Game Dev 35

Game Development In Perl Abram Hindle

for (1..2000) {

$bg->blit($arect,$app,$arect);

#$app->fill($arect,$color);

#$color->r(($color->r + 1)%255);

foreach my $sprite (@sprites) {

my ($img,$x,$y,$velx,$vely,$maxX,$maxY,$irect) =

@$sprite{ qw(img x y velx vely maxx maxy imgr)};

$x = $x+$velx;

if ($x < 0) { $x = 0; $velx = -$velx; }

if ($x > $maxX) { $x = $maxX; $velx = -$velx; }

$y = $y+$vely;

if ($y < 0) { $y = 0; $vely = -$vely; }

if ($y > $maxY) { $y = $maxY; $vely = -$vely; }

my $drect = new SDL::Rect(-width => $img->width, -height

=> $img->height, -x => $x, ’-y’ => $y);

$img->blit($irect, $app, $drect);

@$sprite{ qw(img x y velx vely maxx maxy imgr)} = ($img,$x

,$y,$velx,$vely,$maxX,$maxY,$irect);

}

$app->flip();#

$app->delay(1);

if ($event->poll()) {

my $type = $event->type();

UVic Game Dev 36

Game Development In Perl Abram Hindle

exit if $type == SDL_QUIT;

}

}

UVic Game Dev 37

