
Visualizing the evolution of software using softChange

Visualizing the evolution of software using softChange

Daniel M. German, Abram Hindle and Norman Jordan

Software Engineering Group

Department of Computer Science

University of Victoria

{dmgerman,abez,njordan}@uvic.ca

June 22, 2004

Abram Hindle 1



Visualizing the evolution of software using softChange

This Presentation
• What am I going to cover?

– Source Code Repositories

– CVS

– MRs

– Questions that are applicable to source code repositories.

– Previous Work

– softChange

– Summary
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Source Code Repositories
• Products

– CVS

– Subversion

– Clear Case

– Source Safe

– BitKeeper

• Functionality

– Revisions

– Branches

– Concurrency

– Configuration Management
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CVS
• Why CVS?

– Defacto Standard for Open Source projects.

– Many mature Open Source Projects have open repositories to study.

– Learn about Open Source Software Development processes.
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Operations
• CVS Operations

– commit

– update

– checkout

• We attempt to track CVS Commits by grouping revisions.
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MRs
• What is an MR?

– Modification Request

– Programmer submits a modification of the source code to the repository.

– For CVS - when a programmer commits changes.

Abram Hindle 6



Visualizing the evolution of software using softChange

Questions
• What questions do developers have? [Wu03],

– What happened since I last worked on this project?

– Who made this happen?

– When did the change take place?

– Where did the change happen?

– Why were these changes made?

– How have the files changed?

– What methods or functions were changed?

– What is the frequency of change?

– Which files have changed?

– Who is working on each module?
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Questions
• What questions do administrators have?

– How often does a programmer complete a MR?

– How much does the programmer change per MR

– What kind of commits does one programmer do?

– How much changed between each release?

– How many bugs are fixed and found after a stable release?

– What kind of modifications are done at a certain time?

– When was a module stabilized?

– What is the daily LOC count for each programmer?

– When is a module actively being developed and maintained?

Abram Hindle 8



Visualizing the evolution of software using softChange

Software Evolution
• Why study software in this manner?

– Programmers are not always available for interview.

– Provide historical evidence about software.

– Correlate Project History to the Source Code.

– Verify assertions about the project’s development.
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Previous Work
• Previous Work

– Xia is a plugin for Eclipse for the visualization of CVS repositories [Wu03]

– Lrx [GG04] and Bonsai [Her04] provide Web Interfaces to the CVS

Repository.

– Fisher and Gall created a CVS fact extractor [FPG03]

– Hippikat , by Davor Cubranic and Gail C. Murphy [CM03], combines many

sources of data and provides queryable interface to search through this

historical data.
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softChange
• What is softChange ?

– softChange is a collection of applications that work together in order to

further study the software evolution of a project.

– softChange elaborates on data provided from many sources to enable an

accurate description of the evolution of a project.

– softChange helps answer common questions maintainers, developers and

administrators have about a project.
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Figure 1: Architecture of Softchange
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softChange
• What is softChange ?

– Software Trails Repository - A relational database that stores all the historical

data.

– Software Trails Extractor - Extracts data from CVS, Changelogs, bug reports

and emails.

– Software Trails Analyzer / Fact Enhancer - Combines data in the repository

to form MRs, and produce other useful statistics.

– Visualizer - Visualize the data in the repository to aid the user in exploration

and discovery.
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Visualization
• What can Softchange Plot?

– Growth of LOCS vs time, at the project level and at the module level

– Number of MRs vs time: How many MRs are committed in a given period?

– Number of files vs time: How many files are part of the project at a given

point in time?

– Number of files in a given MR

– Proportion of MRs per contributor

– Proportion of revisions per source code file: How frequently is a given file

modified?

– Number of modules that are modified in a given MR: How frequently an MR

includes modifications of 2 or more modules?

– Project time-tree: “When are given files created and modified?”, displayed in

a timeline fashion.
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Figure 2: PostScript visualizer: proportion of MRs per contributor.
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Figure 3: Hypertext browser: details of an MR using softChange
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Figure 4: PostScript front-end: MRs over time.
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Figure 5: Time-tree in softChange
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Figure 9: Authors “Friendship” 2002 11
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Summary
• We have used softChange to understand the evolution of such products as

Evolution and Mozilla. [Ger04b]

• We have used softChange to help describe how programmers collaborate on

the GNOME project [Ger04a].

• The repository is extendable thus data maybe elaborated on without affecting

other programs.

• Future Work involves further visualization of data in the repositories,

classification of changes, and integration of softChange with other projects such

as JReflex and Shrimp [SBM01].
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