
Visualizing the evolution of software using softChange

Visualizing the evolution of software using softChange

Daniel M. German, Abram Hindle and Norman Jordan

Software Engineering Group

Department of Computer Science

University of Victoria

{dmgerman,abez,njordan}@uvic.ca

June 22, 2004

Abram Hindle 1

Visualizing the evolution of software using softChange

This Presentation
• What am I going to cover?

– Source Code Repositories

– CVS

– MRs

– Questions that are applicable to source code repositories.

– Previous Work

– softChange

– Summary

Abram Hindle 2

Visualizing the evolution of software using softChange

Source Code Repositories
• Products

– CVS

– Subversion

– Clear Case

– Source Safe

– BitKeeper

• Functionality

– Revisions

– Branches

– Concurrency

– Configuration Management

Abram Hindle 3

Visualizing the evolution of software using softChange

CVS
• Why CVS?

– Defacto Standard for Open Source projects.

– Many mature Open Source Projects have open repositories to study.

– Learn about Open Source Software Development processes.

Abram Hindle 4

Visualizing the evolution of software using softChange

Operations
• CVS Operations

– commit

– update

– checkout

• We attempt to track CVS Commits by grouping revisions.

Abram Hindle 5

Visualizing the evolution of software using softChange

MRs
• What is an MR?

– Modification Request

– Programmer submits a modification of the source code to the repository.

– For CVS - when a programmer commits changes.

Abram Hindle 6

Visualizing the evolution of software using softChange

Questions
• What questions do developers have? [Wu03],

– What happened since I last worked on this project?

– Who made this happen?

– When did the change take place?

– Where did the change happen?

– Why were these changes made?

– How have the files changed?

– What methods or functions were changed?

– What is the frequency of change?

– Which files have changed?

– Who is working on each module?

Abram Hindle 7

Visualizing the evolution of software using softChange

Questions
• What questions do administrators have?

– How often does a programmer complete a MR?

– How much does the programmer change per MR

– What kind of commits does one programmer do?

– How much changed between each release?

– How many bugs are fixed and found after a stable release?

– What kind of modifications are done at a certain time?

– When was a module stabilized?

– What is the daily LOC count for each programmer?

– When is a module actively being developed and maintained?

Abram Hindle 8

Visualizing the evolution of software using softChange

Software Evolution
• Why study software in this manner?

– Programmers are not always available for interview.

– Provide historical evidence about software.

– Correlate Project History to the Source Code.

– Verify assertions about the project’s development.

Abram Hindle 9

Visualizing the evolution of software using softChange

Previous Work
• Previous Work

– Xia is a plugin for Eclipse for the visualization of CVS repositories [Wu03]

– Lrx [GG04] and Bonsai [Her04] provide Web Interfaces to the CVS

Repository.

– Fisher and Gall created a CVS fact extractor [FPG03]

– Hippikat , by Davor Cubranic and Gail C. Murphy [CM03], combines many

sources of data and provides queryable interface to search through this

historical data.

Abram Hindle 10

Visualizing the evolution of software using softChange

softChange
• What is softChange ?

– softChange is a collection of applications that work together in order to

further study the software evolution of a project.

– softChange elaborates on data provided from many sources to enable an

accurate description of the evolution of a project.

– softChange helps answer common questions maintainers, developers and

administrators have about a project.

Abram Hindle 11

Visualizing the evolution of software using softChange

Web Client
with SVG support

Visualizer

PostScript

softChange
 Architecture

 mail
archives

 bugzilla
repository

 cvs
repository

.h.pl.pl.pl .cpp.cpp

.c.c.c.c
.c.c.c.c

.cpp.cpp.cpp.cpp

Fact Extractor

Fact EnhancersoftChange
 repository

Figure 1: Architecture of Softchange

Abram Hindle 12

Visualizing the evolution of software using softChange

softChange
• What is softChange ?

– Software Trails Repository - A relational database that stores all the historical

data.

– Software Trails Extractor - Extracts data from CVS, Changelogs, bug reports

and emails.

– Software Trails Analyzer / Fact Enhancer - Combines data in the repository

to form MRs, and produce other useful statistics.

– Visualizer - Visualize the data in the repository to aid the user in exploration

and discovery.

Abram Hindle 13

Visualizing the evolution of software using softChange

Visualization
• What can Softchange Plot?

– Growth of LOCS vs time, at the project level and at the module level

– Number of MRs vs time: How many MRs are committed in a given period?

– Number of files vs time: How many files are part of the project at a given

point in time?

– Number of files in a given MR

– Proportion of MRs per contributor

– Proportion of revisions per source code file: How frequently is a given file

modified?

– Number of modules that are modified in a given MR: How frequently an MR

includes modifications of 2 or more modules?

– Project time-tree: “When are given files created and modified?”, displayed in

a timeline fashion.

Abram Hindle 14

Visualizing the evolution of software using softChange

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 4 8 16 32 64 128

P
ro

po
rt

io
n

of
 to

ta
l M

R
s

(lo
g

sc
al

e)

Developers (log scale)

Developer activity

Figure 2: PostScript visualizer: proportion of MRs per contributor.

Abram Hindle 15

Visualizing the evolution of software using softChange

Figure 3: Hypertext browser: details of an MR using softChange

Abram Hindle 16

Visualizing the evolution of software using softChange

 0

 200

 400

 600

 800

 1000

 1200

98/01 98/07 99/01 99/07 00/01 00/07 01/01 01/07 02/01 02/07 03/01
 0

 20000

 40000

 60000

 80000

 100000

 120000

M
R

s

Date

Ximian starts operations

Rel 0.0 Rel 1.0 Rel 1.2

Rel 1.1.1 Rel 1.3.1

MRs
code MRs

Major releases

Figure 4: PostScript front-end: MRs over time.

Abram Hindle 17

Visualizing the evolution of software using softChange

Figure 5: Time-tree in softChange

Abram Hindle 18

Visualizing the evolution of software using softChange

addressbook

calendarcamel

mail

shell widgets

Figure 6: Evolution Modules 2002 10

Abram Hindle 19

Visualizing the evolution of software using softChange

addressbook

calendar
camel

composer

e−util

filter

mail

shell

widgets

Figure 7: Evolution Modules 2002 11

Abram Hindle 20

Visualizing the evolution of software using softChange

ettore

fejj

jpr

kmaraas

rodrigo

zucchi

Figure 8: Author “Friendship” 2002 10

Abram Hindle 21

Visualizing the evolution of software using softChange

addressbook
calendar

camel

composer

e−util

filter

mail

shell

widgets

ettore

federico

fejj

jpr

rodo

rodrigotoshok

zucchi

Figure 9: Authors “Friendship” 2002 11

Abram Hindle 22

Visualizing the evolution of software using softChange

Summary
• We have used softChange to understand the evolution of such products as

Evolution and Mozilla. [Ger04b]

• We have used softChange to help describe how programmers collaborate on

the GNOME project [Ger04a].

• The repository is extendable thus data maybe elaborated on without affecting

other programs.

• Future Work involves further visualization of data in the repositories,

classification of changes, and integration of softChange with other projects such

as JReflex and Shrimp [SBM01].

Abram Hindle 23

Visualizing the evolution of software using softChange

References

[CM03] Davor Cubranic and Gail C. Murphy. Hipikat: Recommending pertinent

software development artifacts. In Proceedings of the 2003 International

Conference on Software Engineering, pages 408–418, Portland, May

2003. Association for Computing Machinery.

[FPG03] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating

bug report data for feature tracking. In Proc. 10th Working Conference on

Reverse Engineering, pages 90–101. IEEE Press, November 2003.

[Ger04a] D. M. German. Decentralized open source global software development,

the gnome experience. Journal of Software Process: Improvement and

Practice, Accepted for publication, 2004.

[Ger04b] D. M. German. Using software trails to rebuild the evolution of software.

Journal of Software Maintenance and Evolution: Research and Practice,

Abram Hindle 24

Visualizing the evolution of software using softChange

To appear, 2004.

[GG04] Arne Georg Gleditsch and Per Kristian Gjermshus. lrx Cross-Referencing

Linux. http://lxr.sourceforge.net/, Visited Feb. 2004.

[Her04] Tara Hernandez. The Bonsai Project.

http://www.mozilla.org/projects/bonsai/, Visited Feb. 2004.

[SBM01] M.-A. D. Storey, C. Best, and J. Michaud. SHriMP Views: An Interactive

and Customizable Environment for Software Exploration. In Proc. of

International Workshop on Program Comprehension, May 2001.

[Wu03] Xiaomin Wu. Visualization of version control information. Master’s thesis,

University of Victoria, 2003.

Abram Hindle 25

