
Abram Hindle CORBA and Perl Victoria.pm

CORBA and Perl

Abram Hindle

Victoria Perl Mong ers

abez@abez.ca

May 20, 2003

1

Abram Hindle CORBA and Perl Victoria.pm

This Presentation
� What am I going to cover?

– CORBA Introduction

– ORBit Introduction

– ORBit and Perl

2

Abram Hindle CORBA and Perl Victoria.pm

This Presentation
� What am I not going to cover?

– Indepth IDL details

– Non-Orbit based perl CORBA implementations

– Using ORBit in any other language.

– ORBit2

– Programming OO in Perl.

3

Abram Hindle CORBA and Perl Victoria.pm

CORBA Intr oduction
� What is CORBA?

– Common Object Request Broker Architecture

– Multi Vendor Communication Architecutre

– A interoperable architecutre well suited to distributed computering.

– Framework to provice an object level abstraction for remote procedure calls

and the underlying communications.

– Defined and maintained by the Object Management Group

4

Abram Hindle CORBA and Perl Victoria.pm

CORBA Intr oduction
� Why CORBA?

– Interopability.

– Portability - client side.

– Reuse.

– Multiple language support.

– Scalable.

5

Abram Hindle CORBA and Perl Victoria.pm

CORBA Intr oduction
� What are the components of a CORBA System?

– ORB - Object Request Broker. This is your agent which communicates on

your behalf to fufill and request remote methods.

– IDL - Interface Definition Language. You define your object’s external

interfaces in IDL.

– COS - Common Object Services e.g. NameServer

– IOP - Inter Orb Protocal, enable communication between orbs.

6

Abram Hindle CORBA and Perl Victoria.pm

CORBA Example
� A Trivial CORBA Clock Example
� Clock.idl

module VictoriaPM {

interface Clock {

long getTime();

};

}

7

Abram Hindle CORBA and Perl Victoria.pm

CORBA Example

Clock

 getTime(): long

ClientClock ServerClock

calls server implementation

UML Diagram of Clock

Figure 1: Class Diagram of Clock

8

Abram Hindle CORBA and Perl Victoria.pm

CORBA Example

ORB

ClientClock

getTime

The Ether

ServerClock

ORB

1

2

3
4

5

78

9

6

Flow of a getTime call

Call

Return

Figure 2: Flow control of a call to Clock (Notice the communication through the ORBs)

9

Abram Hindle CORBA and Perl Victoria.pm

CORBA Examples
� Why would I use CORBA?

– You want OO remote method invocation.

– You want to create a multi platform, multi language networked system.

– You want to make a heterogenous component based system.

– You want to abstract legacy applications with a developer friendly OO

interface.

– You want networking but you don’t want to program “effecient networking” let

alone be concerned with it.

10

Abram Hindle CORBA and Perl Victoria.pm

IDL
� IDL: Interface Definition Language is used to describe your interfaces to

CORBA objects. (Like prototypes)

� Module : A Package or Module encapsulates all the interfaces and structs into

a neat package. (Like packages)

� Interface : A definition of the corba methods and attributes a interface

implementer provides. (Like classes)

� Methods : single return valued methods with parameters that can act as inputs,

outputs or both (in , out , inout).

� Attrib utes : attributes an interface is expected to provide.

11

Abram Hindle CORBA and Perl Victoria.pm

IDL Example
� An example dictionary service. This will be used in further CORBA::ORBit

examples. IDL maps differently to each language. Not all languages support all

the features IDL supports and vice-versa.
� dictionary.idl

module VictoriaPM {

typedef sequence<string> List;

interface Dictionary {

// put a key value pair into the dictionary.

void put(in string key, in string val);

// Given a key get a value

string get(in string key);

// Given a list of keys get a list of values

List getList(in List keys);

};

};

12

Abram Hindle CORBA and Perl Victoria.pm

How do I use CORBA and PERL?
� Choose a CORBA library to use:

– COPE: - CORBA implemented in Perl (100% perl)

– CORBA::MICO : CORBA bindings to MICO (uses C)

– CORBA::ORBit : CORBA bindings to ORBit (uses C)

13

Abram Hindle CORBA and Perl Victoria.pm

ORBit?
� ORBit is a CORBA ORB destined for use on the desktop but can be used for

network communication. It is heavily used in the GNOME project.

� We’ll use ORBit because it is commonly found on many linux systems.

� CORBA::ORBit bindings are being maintained and work quite well.

� IDL’s do not need to be precompiled with CORBA::ORBit (other languages

“precompile” IDLs) thus saving Perl Programmers some unnecesseary hassle.

14

Abram Hindle CORBA and Perl Victoria.pm

NameService
� The ORBit nameservice interface is defined by the “CosNaming.idl”.

� The NameService is reachable by using it’s object reference to resolve it.

� The nameservice allow the binding of object references to strings.

� NamingContext’s can be created to create a name hierarchy.
� bind : bind a object reference to a name.

$ns->bind([{ id=>’nametobind’, kind=>’’}], $poa->

servant_to_reference($servant));

� resolve : resolve a name to a object reference.
my $object = $ns->resolve([{id => "nametobind", kind => ""}]);

15

Abram Hindle CORBA and Perl Victoria.pm

NameService ...
� Unfortunately ORBit lacks an easy to use method to retrieve this Object

Reference (IOR).

� The nameservice prints it’s IOR, you can save this and provide it at the

commandline to enable your ORB to resolve the nameservice.

� e.g. perl dict-client.pl

-ORBNamingIOR=IOR:01000000280...

� or perl dict-client.pl -ORBNamingIOR=‘cat ns.ior‘

if you use a file to hold the object reference.

16

Abram Hindle CORBA and Perl Victoria.pm

How to Make a Server
� Include the necessary IDL’s. (They will be “compiled” at runtime). Include this at

the start of anything that needs to access your IDL interfaces. (Also include
Error if you want to try and use exceptions).
use CORBA::ORBit idl => [qw(CosNaming.idl dictionary.idl)];

use Error qw(:try);

� The next step is to resolve a reference to an ORB, the RootPOA (Portable
Object Adapter) and the NameService (to resolve future objects).

#get our ORB

my $orb = CORBA::ORB_init("orbit-local-orb");

#get our POA so we can act as a server

my $poa = $orb->resolve_initial_references("RootPOA");

#get our nameservice

my $ns = $orb->resolve_initial_references("NameService");

$ns or die "No Nameserver found!";

17

Abram Hindle CORBA and Perl Victoria.pm

How to Make a Server ...
� The next step will be to make a new Object and associate it with our POA

(Portable Object Adapter)
my $servant = new Dictionary();

#Activate our Dictionary with COBRA

my $id = $poa->activate_object ($servant);

#get a corba object reference

my $ref = $orb->object_to_string ($poa->id_to_reference ($id));

#start the poa manager

$poa->_get_the_POAManager->activate;

� Now we can bind our newly made object to a name in the nameserver and start
our object server (nothing will run after we call “run()”;
#we want to make our new dictionary object map to a key in the

nameserver

my $binding = [{ id=>’dictionary’, kind=>’’}];

#using the CORBA bindings for the namserver bind our new object to

$ns->bind($binding, $poa->servant_to_reference($servant));

#start CORBA Event Loop

$orb->run();

18

Abram Hindle CORBA and Perl Victoria.pm

How to Provide a ServerSide
Implementation

� To return a list/sequence of objects, return a arrayref (sequences of octets map

to a single scalar).

� To accept a list/sequence as a parameter, accept a single arrayref

� Structs are simply hashreferences e.g.
�
key = � name �

� Classes are Perl Objects (blessed hashrefs).

� Your implementation has to use POA ModuleName::Interface as a base class.

� short, long, float, double, octect, boolean, char map to perl scalars. To learn

more about mapping run ‘‘perldoc CORBA::ORBit::mapping’’

19

Abram Hindle CORBA and Perl Victoria.pm

Dictionar y Implementation
package Dictionary;

use base qw(POA_VictoriaPM::Dictionary);

sub new {

my $type = shift;

$type = ref($type) || $type;

my $self = {dict=>{}};

bless($self,$type);

return $self;

}

sub put {

my ($self,$key,$val) = @_;

$self->{dict}->{$key} = $val;

}

sub get {

my ($self,$key) = @_;

return $self->{dict}->{$key};

}

sub getList {

my ($self,$list) = @_;

return [map { $self->{dict}->{$_} } @$list];

}

20

Abram Hindle CORBA and Perl Victoria.pm

How to Run The Server
� We need to run the server and we also need a nameservice running. In the

following example we save the nameserver’s reference to a file and load the the
reference through the commandline for our server. You don’t need to pass
arguements to the ORB init, it will be done automatically.
orbit-name-server > ns.ior &

sleep 2

perl dict-server.pl -ORBNamingIOR=‘cat ns.ior‘ &

21

Abram Hindle CORBA and Perl Victoria.pm

How to Make a Client
� A client is much easier to create. All we need to do is to initalize our ORB then

optionally resolve our nameserver. Once we have the nameserver we can

resolve other objects by their name.
� To Run the client simply use:

#!/bin/sh

perl dict-client.pl -ORBNamingIOR=‘cat ns.ior‘

22

Abram Hindle CORBA and Perl Victoria.pm

dict-c lient.pl
#!/usr/bin/perl -w

use CORBA::ORBit idl => [qw(dictionary.idl CosNaming.idl)];

use Error qw(:try);

use strict;

#init the ORB

my $orb = CORBA::ORB_init("orbit-local-orb");

#get nameservice

my $ns = $orb->resolve_initial_references("NameService");

$ns or die "No NameService!";

#retrieve the dictionary

my $name = [{id => "dictionary", kind => ""}];

my $server = $ns->resolve($name);

#interact with the dictionary object.

$server->put("joe","123");

$server->put("janice","13.5");

$server->put("jacky","99.5");

print "Got: ",$server->get("joe"),"\n";

print "Got: ",join(",",@{$server->getList([qw(joe janice jacky)])}),"\n";

23

Abram Hindle CORBA and Perl Victoria.pm

How to Use CORBA Objects
� To read an attribute “ get attribute” methods can be used.

� To set an attribute “ set attribute” methods can be used.
� Parameters for methods can be multidirectional. The perl mapping is done in a

particular manner:
#IDL: string method(in string instring, inout string inoutstring, out

string outstring)

my ($return,$outstring) = $obj->method($instring,\$inoutstring);

#IDL: typedef sequence<string> strlist; strlist getList()

my $list = $obj->getList();

24

Abram Hindle CORBA and Perl Victoria.pm

Concerns
� When $orb->run is called the server blocks and enters the ORBit event

loop. You cannot run any more code in the same thread. If you want to mix your

clients and server (e.g. listeners) you’ll have to use more than one thread.

� As specified before the nameserver is a pain to access.

� Avoid the site

“http://people.redhat.com/otaylor/corba/orbit.html”

as it hosts an old version of CORBA::ORBit that is not able to use the

CosNaming.idl module.

� POA and NameService are all defined by IDLs in CORBA. CORBA is quite

consistent this way.

� Often times you have to refer to the C documentation for help rather than any

Perl documentation.

25

Abram Hindle CORBA and Perl Victoria.pm

Possib le Issues
� If you get errors regarding marshalling and the nameserver in perl make sure

you have the latest CORBA::ORBit from CPAN. (0.4.7+)

� Make sure “Error.pm” is installed for exception handling. Sometimes it’s

not automatically installed.

� Currently only ORBit 1 seems really supported. I personally have not tested

ORBit2 with CORBA::ORBit.

� If you have a newer version of ORBit1 (e.g. a CVS copy) you can use urls like

“corbaloc://” to describe where the nameserver is.

� Make sure your nameserver is running.

26

Abram Hindle CORBA and Perl Victoria.pm

Get HELP
� perldoc CORBA::ORBit::mapping - how does CORBA map to perl.

� See the examples provided with the source code of CORBA::ORBit.

� http://www.gnome.org/projects/ORBit2/

� http://www.lausch.at/gnome/programming/gnome-corba-programming.html

27

Abram Hindle CORBA and Perl Victoria.pm

Conc lusions
� CORBA is extremely helpful for building distributed systems.

� CORBA is often difficult to interface because of it’s specific “order of operations”

and server event loop.

� CORBA::ORBit is great as you don’t have to deal with generated perl code.

� You will benefit if you use CORBA in more than one language. You will notice

how pleasant it is to use PERL and CORBA can be.

28

Abram Hindle CORBA and Perl Victoria.pm

References
� http://search.cpan.org/author/HROGERS/CORBA-ORBit-0.4.7/ORBit.pm

� http://www.omg.org/gettingstarted/corbafaq.htm

� http://adams.patriot.net/ tvalesky/freecorba.html

� http://www.gnome.org/projects/ORBit2/

� http://www.lausch.at/gnome/programming/gnome-corba-programming.html

� http://www2.lunatech.com/research/corba/cope/

29

Abram Hindle CORBA and Perl Victoria.pm

CodeListing: dict-c lient.pl
#!/usr/bin/perl -w
use CORBA::ORBit idl => [qw(dictionary.idl CosNaming.idl)];
use Error qw(:try);
use strict;
#init the ORB
my $orb = CORBA::ORB_init("orbit-local-orb");
#get nameservice
my $ns = $orb->resolve_initial_references("NameService");
$ns or die "No NameService!";

#retrieve the dictionary
my $name = [{id => "dictionary", kind => ""}];
my $server = $ns->resolve($name);

#interact with the dictionary object.
$server->put("joe","123");
$server->put("janice","13.5");
$server->put("jacky","99.5");
print "Got: ",$server->get("joe"),"\n";
print "Got: ",join(",",@{$server->getList([qw(joe janice jacky)])}),"\n";

29-1

Abram Hindle CORBA and Perl Victoria.pm

CodeListing: dict-ser ver.pl
#!/usr/bin/perl -w

use CORBA::ORBit idl => [qw(CosNaming.idl dictionary.idl)];
use strict;

package Dictionary;
use base qw(POA_VictoriaPM::Dictionary);
#constructor (nothing special)
sub new {

my $type = shift;
$type = ref($type) || $type;
my $self = {};
$self->{dict} = {};
bless($self,$type);
return $self;

}
sub put {

my ($self,$key,$val) = @_;
$self->{dict}->{$key} = $val;

}
sub get {

my ($self,$key) = @_;
return $self->{dict}->{$key};

29-2

Abram Hindle CORBA and Perl Victoria.pm

}
sub getList {

my ($self,$list) = @_;
return [map { $self->{dict}->{$_} } @$list];

}
package main;
use Error qw(:try);
#get our ORB
my $orb = CORBA::ORB_init("orbit-local-orb");
#get our POA so we can act as a server
my $poa = $orb->resolve_initial_references("RootPOA");
#get our nameservice
my $ns = $orb->resolve_initial_references("NameService");
$ns or die "No Nameserver found!";

my $servant = new Dictionary();
#Activate our Dictionary with COBRA
my $id = $poa->activate_object ($servant);
#get a corba object reference
my $ref = $orb->object_to_string ($poa->id_to_reference ($id));
#start the poa manager
$poa->_get_the_POAManager->activate;
#we want to make our new dictionary object map to a key in the nameserver
my $binding = [{ id=>’dictionary’, kind=>’’}];
#using the CORBA bindings for the namserver bind our new object to

29-3

Abram Hindle CORBA and Perl Victoria.pm

#‘‘dictionary’’
#$ns->bind($binding,
$ns->bind($binding, $poa->servant_to_reference($servant));
#start CORBA Event Loop
$orb->run ();
exit(0);

29-4

Abram Hindle CORBA and Perl Victoria.pm

CodeListing: dictionar y.idl
module VictoriaPM {

typedef sequence<string> List;
interface Dictionary {

// put a key value pair into the dictionary.
void put(in string key, in string val);
// Given a key get a value
string get(in string key);
// Given a list of keys get a list of values
List getList(in List keys);

};
};

29-5

Abram Hindle CORBA and Perl Victoria.pm

CodeListing: runser ver
#!/bin/sh
echo "KILL NAME SERVER"
killall orbit-name-server
echo "START NAME SERVER"
orbit-name-server > ns.ior &
sleep 2
echo "DICT-SERVER"
perl dict-server.pl -ORBNamingIOR=‘cat ns.ior‘ &

29-6

Abram Hindle CORBA and Perl Victoria.pm

CodeListing: runc lient
#!/bin/sh
perl dict-client.pl -ORBNamingIOR=‘cat ns.ior‘

29-7

