
CSC523: Analysis of the P2P BitTorrent Protocol

Abram Hindle 0020755

April 16, 2004

1 Introduction

In this paper we look closely at the BitTorrent P2P pro-
tocol. We extract problems that have already been studied
from the protocol and discuss those problems. Some prob-
lems we subject to further analysis while creating new ones
to solve.

BitTorrent’s range of problems crosses many domains,
from computer networks, to sociology to economics, to
computer security issues. BitTorrent covers a wide gam-
bit of problems and thus many will be discussed. There is
also a literature of the general state of P2P in relation to
BitTorrent.

Problems examined consist of Tit For Tat strategy in Iter-
ated Prisoners Dilemma, Various P2P Questions, Byzantine
Generals Problem, and Hashing.

1.1 What is BitTorrent

BitTorrent is a P2P protocol meant for distributing files.
The purpose behind BitTorrent is to reduce the bandwidth
load for the peer (the seeder) initially sharing the file . Peers
who download from the seeding peer join the network and
share their blocks of the file with other clients. Each file is
split into blocks so a seeder can distribute blocks among the
downloading peers such that peers can download the blocks
off other peers. Thus a downloader effectively becomes an
uploader. As more peers join they connect to the download-
ing peers and trade file blocks from them.

To promote sharing of bandwidth a Tit For Tat algorithm
is implemented on each peer. This suggests that a peer must
send data to another peer if it expects the other peer to send
data back. Thus to successfully download from a BitTorrent
network one has to allocate some of their upstream band-
width to the network otherwise suffer very slow transfers.

BitTorrent is interesting as it is currently used by many
users to distribute large files. Originally used to distribute
legal high quality bootleg recordings of live concerts, Bit-
Torrent is now very popular with those who trade televi-
sion, movies, arcade games, comic books and music ille-
gally. BitTorrent is also used heavily in the Linux commu-
nity to distribute like files such as CD images. The popu-
larity of BitTorrent is likely due to the control the seed has
over the network as well as the ability for a seed to distribute
a file’s whole size once while. A seeder can post a torrent
file on their webserver and say “If you want this file jump
on to this torrent”. A user downloads the torrent and Bit-
Torrent downloads the file. The focus of effort and lack of
”always-on” P2P sharing software makes it especially use-
ful in small community like those based on messageboards.
There are many communities which trade television shows
and comics through semi-private webboards using BitTor-
rent. Due to BitTorrent’s tit for tat bandwidth sharing poli-

cies often the seeder can send out a file once and have it
distributed to many due to the P2P network made around
that file. Thus effectively by uploading the file once, its
persistence within the network depends on how long other
hosts stay on the network.

2 Terms

� Torrent - A file which provides a URL to the tracker as
well contains a list of SHA1 hashes for the data being
transfered. This is so that the hashes in the Torrent can
be used to verify if the blocks received are valid or not.

� Tracker - A middleman who informs the peers of all
the other peers in the network.

� Peer - A client to the network dedicated to a torrent.

� Seeder - A Peer who has all the blocks in a torrent.

� Choked - A connection is choked if not file data is
passed through it. Control data may flow but the trans-
mission of actual blocks will not.

� Interest - indicates whether a peer has blocks which
other peers want.

� Snubbed - A peer acting poorly - not uploading - or
sending bad control messages, usually disconnected or
ignored.

3 Literature Review

I read various papers on issues relating P2P. Some re-
lated to BitTorrent, while other related slightly to analysis
using techniques such as Chernof Bounds or iterated pris-
oners dilemma. Here are some reviews of some of them.

“Analyzing peer-to-peer traffic across large networks”
by Sen and Wang [10] discussed how P2P traffic actually
looked on a large network. They analyzed the network traf-
fic of an ISP (probably a AT&T owned ISP) and concluded
the results. They took statistics about packet sources and
destinations and reasoned that many of the current p2p net-
work available today can be taken down by the removal of a
few important nodes. They also were able to notice the dif-
ference p2p users using networks that used supernodes and
those which didn’t. They observed the phenomena of less
than 10% of the hosts being responsible for more than 90%
of the traffic and content on the file based P2P networks.

Some of my research went into how agents act. “Emo-
tional Pathfinding”, [11] by Donaldson, Park and Lin de-
scribed agents who prioritize goals using emotions. Emo-
tions were abstracted away to the idea of dominant priori-
ties that can increase or decrease in importance and override
other goals. This is to avoid certain erratic and fast acting

1

behaviors which can be detrimental to the agent or the sys-
tem. This paper provided a good basis for what a computer
scientist means by the term “emotional”. It’s almost like
smoothing the transitions between priorities. “A Framework
for the simulation of Agents with Emotions”, [3] by Bazzan
and Bordini shared the same idea of emotions from the pre-
vious paper and applied it to the prisoner’s dilemma. Un-
fortunately they only simulated the results. In their trials of
iterated prisoners dilemma, the emotional agents usually de-
feated the always defect and always cooperate agents. The
emotional agents were not tested against tit for tat agents be-
cause the researchers thought that defeated the purpose and
the results would have been predictable. Tit for tat likely
would have been dominant against an emotional agent. The
emotional agents are relevant to BitTorrent as BitTorrent
acts similar to an optimistic tit for tat algorithm.

“Notions of reputation in multi-agents systems: a re-
view”, by Mui, Mohtashemi, and Halberstadt [8] discussed
the state of reputation in agent based systems. Discussed
were different ways for measuring, observing and inferring
reputation. Examples of real world systems were given such
as eBay buyer/seller feedback. They then tested many of
these systems for reputation in Iterated Prisoners Dilemma.
The conclusion seemed to be that reputation based on what
a trusted group of peers had already concluded about an-
other peer resulted in a better performing agents in Iterated
Prisoners Dilemma.

“Towards a Pareto-optimal solution in general-sum
games”, by Sen, Airiau and Mukherjee [9] discuss tech-
niques in which agents can learn to not necessarily co-
operate but to optimize their strategy in a Markov game
(like iterated prisoners dilemma) in order to achieve Pareto-
optimal solutions that beat Nash Equilibrium solutions.
Concepts such as desired states versus greedy states are
brought up. A desired state is where both agents made a
choice which results in the greatest payoff for both of them
together. A greedy state is one which both agents choose
that state because they are given safe but high payoffs. This
was to also use learning to determining whether given the
opponent it was feasible to use a greedy or desirable strat-
egy. This is related to BitTorrent because BitTorrent often
takes optimistic approaches to game theory in the hopes of
gaining faster, more cooperative peers.

“The Byzantine Generals Problem” [5] by Lamport,
Shostak and Pease introduced the Byzantine General’s
Problem to computer science. The problem was proposed
and analyzed in the paper, the problem is about how a group
of traitors can confuse messages and cause miscommunica-
tion, cause disagreement or agreement based on their bias.
These traitors could be working together to subvert the in-
tegrity of the final decision. The paper covers many dif-
ferent aspects of the problem from communication network
disruption to bad commanders.

“Scalable Byzantine Agreement” [6] by Lewis and Saia
discussed an algorithm to solve the Byzantine Agreement
using an randomized algorithm. It uses randomness and
probability on the Byzantine General’s Problem of Byzan-
tine Agreement such that using

���������	��

messages sent each

for each of
�

peers (
���������
��

rounds) the the problem of
reaching a trustable agreement is solved. They make an in-
teresting but valid claim that “In fact, for a p2p system to be
scalable we generally require all resource costs per peer to
be polylogarithmic in the number of peers”.

“FARSITE: Federated, Available and Reliable Storage
for an Incompletely Trusted Environment” , by many au-
thors at Microsoft Research [2], describes a distributed file
system like much like NFS except based around the idea
that not all the peers who will store and keep information
can be trusted. This decentralized storage technique is to
take advantage of a large companies unused storage space
found on their employee’s computers. An office might have
40 computers each with 20 Gigabytes of free space. Effec-
tively there is 800 gigabytes of unused space that could be
used in FARSITE file system. FARSITE is interesting be-
cause it supposedly protects itself against byzantine faults.
Unfortunately the paper doesn’t really go into what they do
to protect themselves, they just make reference to the name
of fault. This is what one would expect from a paper from a
industry research group.

4 Problems

There are many problems surrounding P2P protocols and
the BitTorrent Protocol itself.

4.1 Block Distribution Problem

Block Distribution is a concern for BitTorrent. Peers join
and exit the network all the time. If a seeder uploads to
a peer that leaves, many of those blocks are lost. Thus a
host is often obligated to distribute blocks amongst peers
such that when a peer leaves a large subset of blocks is not
missing.

BitTorrent peers usually request random blocks initially
then request the rarest blocks from that point on.

4.1.1 Random Block

The connecting peer doesn’t know much about the network
it connects to. If it choses the rarest block first, the peer
could be slowed since this block could be rare due to a very
slow host. If the peer requests a block the seeder has already
sent (possibly the rarest block) the seeder is less likely to
send that block to the peer as it’s already been sent once.

Thus by requesting a random block first the peer has a
better chance at receiving a full block from a good source

2

than asking for a rare block.
Random block is most useful when a client doesn’t know

the layout of the network well yet. Although it seems some-
what strange. Wouldn’t it be better to download the first
block from the network as it’d be guaranteed to be there?
Potential issues with using one static block would be that
no one on the network wants that block thus you rely on the
optimistic parts of the tit for tat algorithm. By requesting a
totally random block you slowly get a block which is likely
to be rare to other peers such that you can participate in the
network effectively.

4.1.2 Rarest Block

Rarest Blocks are requested by the peers. By rarest we
mean the block that the fewest peers have. By requesting
rarest blocks, peers try to keep all the blocks available to
the network. This reduces the reliance on one peer to host
one block and provides redundancy as the weakest parts are
backed up first.

I will demonstrate how using the rarest block first algo-
rithm we will still get all the blocks in the network. Let
there be

�
peers. Let there be a file of � chunks. For each

� chunks assume at least 1 peer has that chunk.
���

in-
dicates how many peers have chunk m. The rarest block is
the ����� �
	���
�
 � ����� ��� � � �����
�
 � �
�� Everyone in the net-
work has all blocks when

�����������
�
 � � � � �
. Thus

if a peer doesn’t have a block and the block is available in
the network then that block will be the rarest or eventually
become the rarest. The the peer will get that block and if� � �
�
 �!���"� �

then everyone has downloaded all the
necessary blocks.

Given
�

peers and 1 seeder. How many times does the
seeder have to upload to send the whole file of � parts to
the

�
peers assuming each peer drops off once they have all

the pieces.
So our upper bound is naively

�$# � parts uploaded.
Given or Assumed:
Lets assume each peer is connected to all other peers.��% �
Each peer is connected to all other peers.
Each peer is connected to the seeder
Assume no preferences or priority to uploaders
Assume each turn every peer can upload 1 chunk to 1

peer and receive 0 or more chunks from another peer
Lets assume each peer has 1 chunk and the seeder has all

the chunks.
Lets assume a peer randomly chooses another peer to

send to
Chance a peer is not chosen in a round,

� ���'&)(
+* � �
&
�

-,

What is the expected number of peers that chose any
given peer?

The probability of being chosen is . � � * � �/& �
0$1 24365
� �7# . � ��* � �8& �
 , thus it expected that0$1 293:5;� ��* � �<& �
 where
243

is a random var indicating
how many peers chose peer � .

We want to know how many rounds before a peer has all
the blocks.

Based on coupon collector problem [7] if we are offered
one random block per turn,

0$1 2
5�� (� � � �>=)?
where

?
is

a constant.
This would only be true if the distribution was uniform

per turn of a block being offered.
Lets skip to Turn � where the seeder has uploaded all

the blocks to network.
Assuming a uniform distribution,

2$3
is a r.v. which in-

dicates how many blocks peer � has.
0$1 2 3 5�� � * � . Thus

each peer has � & 0>1 2 3 5 blocks left.
If we assume a system where everyone uploads ran-

domly to everyone else. This is basically the coupon col-
lector problem. Each round we get a block randomly from
someone. Lets assume that our current collection of blocks
is unique to us thus the likely hood of getting one of the
initial

0$1 2 3 5
blocks back is initially zero and slowly starts

to grow to be bounded by
0$1 2 3 5 * � � � * � . So we’ll ig-

nore the duplicates thing. Taking the previous results from
coupon collector

0>1 2@5�� (� � � �<=A?
we now apply it to

our current situation where X is a r.v. indicating how many
rounds before we have all the blocks if we’re sent a block
randomly each round.

0$1 2@5B� (� � & � * ��
 ��� � � & � * ��
C=?
So the expected number of turns til everyone has their

blocks should be � =7(� � & � * ��
 ��� � � & � * ��
D=7? .
Let’s compare our model’s results with the real world.

These results are from the empirical section 6.2, see there
for any constraints on the experimental results. See figure
1 for the data and the graph of the data in figure 2. The
comparison between the experimental results and the model
aren’t quite valid for 2 reasons. In the experiment the peers
drop out when they are finished and the network had shared
but limited bandwidth.

4.2 Game Theory

Game Theory applies directly to BitTorrent as aspects
of game theory help determine fair strategies that promote
bandwidth sharing and the distribution of load among peers.

4.2.1 Pareto Efficiency

A Game that is Pareto efficient if there no way someone is
better off without making someone worse off [1]. In BitTor-
rent this is used to spur peers to look for better peers or at
least be fair and communicate with many peers.

3

file chunks experimental n=4 log(10) n=4 log(2) n=5 log(10) n=5 log(2) n=5 log(exp(1))
1.00 17.86 0.81 0.38 0.57 0.84 0.48 0.64
2.00 22.05 2.53 3.75 3.22 2.65 4.17 3.50
4.00 30.74 6.86 13.51 10.59 7.23 14.74 11.44
8.00 48.17 17.34 39.02 29.50 18.32 42.28 31.76

16.00 81.60 41.90 102.04 75.64 44.34 110.16 81.27
32.00 154.20 98.25 252.08 184.55 104.10 271.52 198.02
64.00 303.65 225.40 600.16 435.64 239.03 645.43 467.02

128.00 639.06 508.60 1392.31 1004.35 539.71 1495.67 1076.00
256.00 1309.33 1132.79 3168.63 2274.88 1202.72 3400.94 2435.91

Figure 1. Experimental Results Versus Model Results File Chunks Versus Turns/Time

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

Number Of Chunks Vs Turns/Time

UL Turns
UL Turns

x+2*(x-x/4)*log(x-x/4)
x+2*(x-x/4)*log(x-x/4)/log(2)

x+2*(x-x/4)*log(x-x/4)/log(10)

Figure 2. Experimental Results Versus Model Results File Chunks Versus Turns/Time

4

In computer science terms, seeking Pareto ef-
ficiency is a local optimization algorithm in which
pairs of counterparties see if they can improve
their lot together, and such algorithms tend to lead
to global optima. Specifically, if two peers are
both getting poor reciprocation for for some of the
upload they are providing, they can often start up-
loading to each other instead and both get a better
download rate than they had before.[4]

Effectively BitTorrent is designed to promote the shar-
ing of bandwidth in order to improve transfer rates between
peers.

4.2.2 Tit For Tat

Tit For Tat is a strategy for uploading and downloading be-
tween peers. There are pessimistic and optimistic tit for tat
algorithms.

Tit For Tat is a strategy used in game theory problems
such as prisoner dilemma where you take the strategy of
your opponent. If they cooperate, you cooperate next turn.
They don’t cooperate; you don’t cooperate.

How would a random strategy fair against tit for tat? By
fair we mean minimize the time it takes to download while
minimizing the amount of data uploaded. A strategy that
doesn’t upload much downloads a lot is a good strategy.

Lets create an small game.
Lets define the tit for tat strategy as for the first round we

always upload. Given a round � where ��� � and � 	��
and ���	� � � � � if
 uploaded during round � & � or � if

didn’t

�
Tit for tat strategy uploads if ���	� � was 1. Otherwise it

doesn’t upload.
How does tit for tat fare against a random opponent?

We’ll define a random opponent as an opponent who given
a probability . uploads to
 .

Thus the expected number of times a random opponent

 uploads during a n round game is

�9# . . An optimistic tit
for tat would result in an expected number of uploads either
being

� # . uploads or
��# . = � uploads during the game of�

rounds,
0$1 2
5

or
0$1 2@5 = � .

Event 1
 doesn’t upload at the start, resulting in +1
more uploads. Thus Event 1 occurs with a probability of� � & .
 .

Event 2
 does upload a the start resulting in 0 more
uploads. Thus Event 2 occurs with a probability of . .

Thus for
 the
0$1 2
5

where
2

is the number of uploads

 makes and � is the number of uploads
 makes is . #0$1 � 5 = � � & .
 � 0$1 � 5 = �
 which is . # � # . = � � & .
 � �9#
. = �
 . # � # . = � # . = � & � # . # . = & . � � # . & . = � .
Thus

0$1 2
5 � �$# . & . = �
This is a naive approach to game theory with BitTorrent.

4.3 Related Problems

4.3.1 Byzantine Generals Problem

The Byzantine Generals Problem is related to BitTorrent
more so as a warning against sabotage on the the BitTor-
rent network. Sabotage could come from copyright holders
to Internet vigilantes to hackers.

This relates to BitTorrent. How does BitTorrent defend
against colluding peers that seek to subvert the network?
An area in BitTorrent where this could be used in detecting
if a peer or a group of peers is lying about their upload /
download statistics to the tracker. If everyone voted and
agreed what one client uploaded that might work out quite
well. Especially if it only takes

���������	��

as suggested by

Lewis and Saia [6].
In BitTorrent If a peer detects invalid data from an-

other peer such as damaged datastructures or improper field
lengths, it automatically disconnects that peer. If a peer
sends invalid data to another peer, this will be noticed as
the SHA1 hash from that chunk will not match.

5 Hashing

SHA1 hashes are used by BitTorrent on chunks of the
file. The size of the chunks range from 64KB to 1024KB.
The chunks are always of sizes

(,
where

�
is greater than

or equal to 16.
SHA1 hashes are 160-bit, thus naively the likelihood of

any two strings having a matching checksum is
(� ����� . As

far as I can tell no one has found a SHA1 collision yet.
Thus if a peer’s packets get modified or garbled or it’s

original file is not complete or is corrupted the other peer
will know. If a peer keeps sending bad data it will be
snubbed and ignored.

6 Further Analysis

6.1 BitTorrent Code

Bram Cohen’s code for BitTorrent is well written. It
lacks commenting (per each file there are 2 lines of com-
ments at the top of the file). The language BitTorrent was
written in is Python. A clean cut scripting language which
has some nice array manipulation operators. Python is vir-
tually equivalent to Perl.

The Choker is a rather interesting module. Every 30
seconds a round robin scheduler runs and checks for con-
nections with are choked but are interested in participating.
This scheduler rotates the connections array until the first
choked but interested connection appears.

At least every 10 seconds the connections are re-
prioritized using the rechoke method.

5

B doesn’t upload to A B uploads to A
A doesn’t upload to B (0,0) (1,0)

A uploads to B (0,1) (1,1)

Table 1. In relation to A’s actions (A receives,A sends)

The algorithm for rechoking is such:

� create a list called ’preferred’ of connections are not
snubbed but are interested

� reverse sort ’preferred’ by the upload rate (so the
largest uploading connections appear first)

� cut the the tail off the list to reduce the size to
max uploads in size

� for all connections

– unchoke the connection if it is in the list ’pre-
ferred’

– otherwise unchoke the connection if we have
less unchoked and interested connections than
min uploads or if we haven’t found a interested
connection yet.#

If we find an interested connection we in-
crement our upload count . Thus we will
keep unchoking until a min uploads number
of connections have been unchoked.

– otherwise choke the connection.

Lots of the BitTorrent code relies on randomization to
provide fair and optimistic strategies. In the choker when
one adds a connection it is added randomly to the connec-
tion list (with a slight bias for the front of the list).

Lets take a look at a tiny sample of the code in figure 3.
This method is called when a connection is made and

the connection is added to the Choker (who chokes and un-
chokes connections, as well as prioritizes them). It takes in
3 arguments, the object itself, the connection and the pri-
ority . . If . is not set, the connection is randomly placed
inside the connection list associated with the object.

Randrange chooses a values from the range1 & (� ����� ����� ���
 ? � � ��� ?�� � � �	�
 = �
 thus the range is1 & (� ����� ����� ���
 ? � � ��� ?�� � � �	�
 5 . Using that value the con-
nection is inserted into the list. In the forth line we see, if
the value for . is less than 0 we use 0 instead. Thus
,��
is probability that an element will be put at the head of the
list, where

�
was the size of the list originally. Where as

for all other positions it is
�
,��
 , thus � �
,
�

= ,,��
 .

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300

File Size Vs Turns/Bytes Uploaded

Total Uploaded
Total Uploaded

UL Turns
UL Turns

Figure 5. Given files of size
(�

to
(
�

megabytes
in size we see how much the seeder uploads
to 4 other peers on a shared network

6.2 Empirical

A test framework was created to enable the easy creation
and execution of tests using BitTorrent. A network of 5
computers was setup and linked together using a 10/100
switch. The 10/100 switch caused difficulties as it allowed
some hosts to access 10 times the bandwidth than other
hosts. Instead a 10 MBit hub was substituted.

Given a little bit more time I would be able to do more
effective testing. Such as ones which don’t require the peers
to exit of finishing.

In figure 4 an example run of the network is given. The
seeder is the first peer . The figure describes the upload
and download rates in bytes per second of each peer in the
network. Each peer is set to disconnect once they have the
full file. These experiments take place on one Ethernet net-
work, thus the bandwidth is shared bandwidth. When more
peers leave, they stop using the network bandwidth thus the
seeder uploads faster. A problem with the experiment is
that the machines running the BitTorrent software are het-
erogeneous. They differ in just about every way other than
software. The software is exactly the same except for the
drivers that the kernel loads.

In figure 5 we graph the linear relation between how
much the seeder uploads and how big the files are.

6

def connection_made(self, connection, p = None):
if p is None:

p = randrange(-2, len(self.connections) + 1)
self.connections.insert(max(p, 0), connection)
self._rechoke()

Figure 3. Python Code that assigns priority to new connections

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 4. Upload and download Rates of Peers from a seed. In this case, the Seed uploaded almost
4 times the filesize in bytes to 4 peers

7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 10 100 1000

File Size Vs Turns/Upload Ratio

UL Ratio To Size
UL Ratio To Size

UL Ratio Turns To Size
UL Ratio Turns To Size

Figure 6. Given files of size
(�

to
(�

megabytes
in size we see how much the seeder uploads
to 4 other peers on a shared network, this is
the ratio of turns or uploaded megabytes to
the original file size

7 Conclusions

The models generated here are too naive to be really
useful when modeling BitTorrent. More complex models
would have greater difficulty in proving facts about the sys-
tem. Although as shown in section ?? even a naive model
can successfully model the constraints of the real world.
Perhaps a simple model is best as it leaves room for ex-
perimental error.

BitTorrent uses concepts from game theory and eco-
nomics to promote fairness. The use of optimistic strategies
enables connections to attempt to renegotiate and counter
balance the downward spiraling effects of the tit for tat al-
gorithm.

Optimistic techniques used by BitTorrent seem to be use-
ful strategies to promote file downloading. Bram Cohen,
the author of BitTorrent, has suggested that BitTorrent was
never meant to promote 1 to 1 upload download ratios, it
was created to reduce the load of sharing large files.

In relation to randomized algorithms and analysis of
such systems, BitTorrent is quite interesting albeit quite
complex. The major parts of BitTorrent related to random-
ized algorithms are piece picking, upload / download strat-
egy (tit for tat), and hashing. The game theory aspects
of BitTorrent relate closely with economics and statistics
which are quite related to probabilistic analysis.

8 Future Work

There needs to be further investigation into how a group
of peers can collude to create unfair network conditions,
such as download more than upload, or even simply disrupt
the network enough to disable the distribution of a file. As

well there needs to be research into how to detect, prevent
and protect against this collusion.

An interesting problem to investigate is whether or not
multiple peers on the same computer can download faster
than one peer on one computer. Judging by the tit for tat al-
gorithm I have reason to believe that this might be true since
there is a tendency to be optimistic and grant a client a band-
width reprieve to see if they will share more. Thus will this
compounded optimism work in the favor of the host with
multiple peers versus the host with a single peer? From my
personal study of this phenomenon I found that the peers on
the same host will share amongst themselves very rapidly.

Given the tit for tat choking algorithms use a 30 second
window is there a way to use this timing information to im-
prove the upload download ratio in one’s favor?

Often BitTorrent is used across the Internet, over many
networks. BitTorrent tests should probably be done across a
peer to peer network with explicit paths rather than a shared
medium network like 10Mbit ethernet. This should simu-
late being on different networks and should avoid the prob-
lem of limiting 5 peers to a 1 MBit pipe.

9 What Did I actually Do

� Comment and Extract algorithms from BitTorrent. At-
tempt to understand parts of the program from it’s
source. Specifically the piecepicker and choker.

� Attempt to read a lot of papers in the area.
� Attempt to run empirical tests on BitTorrent using a

network of computer and modified BitTorrent client.
Generate a testing framework. Generate the code nec-
essary to collect, retrieve and analyze the data.

� Attempt at proving facts about naive models of BitTor-
rent. Attempt to verify those models against experi-
mental data.

� Write this report.

References

[1] Pareto efficiency. 2004.
http://en.wikipedia.org/wiki/Pareto efficiency.

[2] A. Adya, W. Bolosky, M. Castro, R. Chaiken, G. Cer-
mak, J. Douceur, J. Howell, J. Lorch, M. Theimer, and
R. Wattenhofer. Farsite: Federated, available, and reli-
able storage for an incompletely trusted environment,
2002.

[3] A. L. C. Bazzan and R. H. Bordini. A framework
for the simulation of agents with emotions. In Pro-
ceedings of the fifth international conference on Au-
tonomous agents, pages 292–299. ACM Press, 2001.

8

[4] B. Cohen. Incentives build robustness in bittorrent.
May 2003.

[5] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[6] C. S. Lewis and J. Saia. Scalable byzantine agreement,
2004.

[7] M. Mitzenmacher and E. Upfal. Probabilistic Analysis
and Randomized Algorithms: A First Course. Brown
University, 2003.

[8] L. Mui, M. Mohtashemi, and A. Halberstadt. Notions
of reputation in multi-agents systems: a review. In
Proceedings of the first international joint conference
on Autonomous agents and multiagent systems, pages
280–287. ACM Press, 2002.

[9] S. Sen, S. Airiau, and R. Mukherjee. Towards a
pareto-optimal solution in general-sum games. In Pro-
ceedings of the second international joint conference
on Autonomous agents and multiagent systems, pages
153–160. ACM Press, 2003.

[10] S. Sen and J. Wang. Analyzing peer-to-peer traffic
across large networks. In Proceedings of the second
ACM SIGCOMM Workshop on Internet measurment,
pages 137–150. ACM Press, 2002.

[11] A. P. Toby Donaldson and I.-L. Lin. Emotional
pathfinding, 2004.

10 Appendix

Figures 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 depict BitTor-
rent networks working on different file sizes. Do to a bug in
the clock, the seeder (the red line) starts earlier but on the
graph it appears later. I need to use a synchronized clock in
future experiments.

9

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 2 4 6 8 10 12 14 16 18

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 7. BitTorrent Network of File of 1MB

10

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5 10 15 20 25

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 8. BitTorrent Network of File of 2MB

11

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5 10 15 20 25 30 35

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 9. BitTorrent Network of File of 4MB

12

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20 25 30 35 40 45 50

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 10. BitTorrent Network of File of 8MB

13

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 10 20 30 40 50 60 70 80 90

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 11. BitTorrent Network of File of 16MB

14

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 20 40 60 80 100 120 140 160

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 12. BitTorrent Network of File of 32MB

15

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 50 100 150 200 250 300 350

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 13. BitTorrent Network of File of 64MB

16

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 100 200 300 400 500 600 700

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 14. BitTorrent Network of File of 128MB

17

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 200 400 600 800 1000 1200 1400

UL Rate 1
UL Rate 2
DL Rate 2
UL Rate 3
DL Rate 3
UL Rate 4
DL Rate 4
UL Rate 5
DL Rate 5

Figure 15. BitTorrent Network of File of 256MB

18

